
Creating Lightcones in HACC - CPAC - May 2018

Creating Lightcones in HACC
Joe Hollowed, Cosmological Physics and Advanced Computing Group

Last edited May 23, 2018

This document outlines our current approach for generating lightcones from HACC
simulation products. In § 1, we derive the condition which defines all spacetime events
that can be seen by an observer at any given time (we parameterize the surface of
the observer’s past lightcone). In § 2, we describe how we apply this condition to
find approximate lightcone-crossing times of objects whose positions and velocities
are known only at discrete time snapshots. Higher order effects and corrections are
discussed in § 3. § 4 describes the details of our implementation of this problem in
HACC, and finally, a summary is given in § 6. The code which implements the methods
described here can be found in the HACC repository at
https://svn.alcf.anl.gov/repos/DarkUniverse/hacc/ (see § 4 for details). § 1 -
§ 2.1 of this document’s content was originally based on in-line documentation in the
above mentioned code, written by Hal Finkel.

1 Parameterizing the Lightcone Surface

At any given time t, an observer will see only what is on the surface of her past-
lightcone. Any event located inside the lightcone surface has been seen in the past,
and any event outside will be seen in the future, in general. Hence, our goal is to
parameterize this surface in terms of quantities that are available to us as simulation
outputs. Applying this parameterization to simulation datasets will allow us to locate
all particles on an observer’s past-lightcone at any given time, yielding the observable
universe.

Let us first consider the problem in a static Euclidean space. Recall that the space-
time separation between an observation, occurring at (t, r, θ, φ), and some event at
(t+ dt, r+ dr, θ + dθ, φ + dφ), by special relativity, is given by the Minkowski metric:

ds2 = −c2dt2 + dr2 + r2dΩ2, (1)
where dΩ2 includes the change of variables from Cartesian to spherical coordinates as

dΩ2 ≡ dθ2 + sin2 θdφ2. (2)
An event being located on the lightcone surface is defined by the fact that the line
joining it to the observer is a null geodesic, where ds2 = 0. If we impose the constraint
that the observer is located at the spatial origin (which is always done in practice),
then this null geodesic is constant in θ and φ, and thus dΩ2 = 0. Objects located on the
lightcone therefore satisfy the condition

0 = −c2dt2 + dr2 (3)

which can be rearranged to express the distance to the event in terms of the light travel
time as

c2dt2 = dr2 →
∫ tobs

tevent
c dt = c(tobs − tevent) = ∥revent∥ , (4)

1

Creating Lightcones in HACC - CPAC - May 2018

where tobs and tevent are the time coordinates of the observer and any observed event,
respectively. ∥revent∥ represents the magnitude of the spatial distance to the observed
event.

So, we have parameterized the lightcone surface by the rightmost equality in Eq.(4)
for a static universe. However, the universe is not static, and so light travel time be-
tween two events is not ∥revent∥/c, but should effectively be increased by the scale factor
a(t). Obtaining the correct condition for finding an event on the lightcone, then, must
require repeating the simple procedure in Eq.(1-4) using the more general Robertson-
Walker metric:

ds2 = −c2dt2 + a(t)2 [dr2 + Sκ(r)2dΩ2] . (5)

Here, Sκ(r) defines the curvature of space, which can be ignored since dΩ2 = 0, as per
our assumptions stated above (the curvature information remains encoded in the form
of a(t)). In that case, a null geodesic spacetime separation under this metric (again set
ds2 = 0 and solve) gives ∫ tobs

tevent
c
dt
a(t)

= ∥revent∥ . (6)

It will also be handy to have this condition in another form; we can use the Hubble
parameter H to cast the variable of integration to the scale factor, as a proxy for time,
if we note the following substitutions:

dt =
dt
da

da =
da
ȧ

and H =
ȧ
a
. (7)

Combining Eq.(6-7) results in ∫ 1

aevent
c
da
a2H

= ∥revent∥ . (8)

Eq.(6, 8) is our sought after parameterizationa; all events whose spacetime coordinates
satisfy this condition are found on the lightcone surface and are visible to the observer,
at the spatial origin, at time tobs.

2 Crossing the Lightcone

Given pristine knowledge of particle positions resultant from cosmological simulations,
Eq.(8) appears straightforward to apply: for any time t, find the associated scale factor
a(t), and evaluate the integral on the left hand side of Eq.(8) to obtain some value R.
Then, check all particles in the simulation for the condition that ||ri|| = R, where the
subscript i denotes the ith particle. If the condition is satisfied for any particle i, then

aEq.(8) is actually the parameterization of a sphere in three-dimensional space, whose radius is de-
pendent on the parameter a (A more readable form of a general expanding/contracting sphere is
∥r∥ = a(t)

√
x2 + y2 + z2). Actually visualizing such a sphere on a static figure requires project-

ing the object into two spatial dimensions and allowing time to occupy the third axis— this results
visually in a cone, hence the name ”lightcone”. Indeed the lightcone surface is truly a spherical
object.

2

Creating Lightcones in HACC - CPAC - May 2018

that particle crossed the lightcone and is seen by the observer at time t. Repeat this
for all times t to fill the lightcone.

Unfortunately, simulation outputs do not include “all times t”. Since we only have of
order 100 time snapshot outputs from a ≈ 0 to a = 1, the naive approach described in
the previous paragraph is not applicable. Consider a particle i that crosses the light-
cone surface (is seen) at time teventb. This event is only captured in the simulation
outputs by the fact that particle i is inside the observer’s past lightcone at some snap-
shot time tj < tevent, and outside of the lightcone at the next snapshot time tj+1 > tevent.
Ultimately, the problem that we need to solve in order to construct the lightcone is
finding tevent for all particles. This has traditionally been done in the HACC codebase
using particle extrapolation from time tj, which is discussed in § 2.1. More recently im-
plemented is an improved approach which rather interpolates between snapshot times
tj and tj+1, described in § 2.3.

2.1 Particle Extrapolation
Since we would ultimately like to solve Eq.(8) for aevent (equivalently Eq.(6) for tevent),
we must first write the relevant quantities in terms of simulation data products. Let us
consider a single simulation timestep for the remainder of this section, which begins
at snapshot j and ends at snapshot j + 1c. The time it spans is tj+1 − tj, and the scale
factor evolution is aj+1 − aj.

Each particle in snapshot j has six quantities that are relevant to our purposes; three
comoving Cartesian coordinates and corresponding velocities

rj =

xj
yj
zj

 , vj = ṙj . (9)

We now define ∥revent∥ by linear extrapolation from the particle’s position and velocity
at tj:

∥r∥ = ∥rj + vjδt∥

=
[
(xj + ẋjδt)2 + (y1 + ẏjδt)2 + (z1 + żjδt)2]1/2 (10)

where we have introduced the quantity δt as δt = tevent − tj. Let us also obtain an
expression for aevent in Eq.(8), the scale factor at the time tj + δt to first order:

aevent = a(tj + δt) ≈ aj + ȧδt . (11)

Finally, let’s describe aj+1 in terms of aj and the timestep width τ = tj+1 − tj, as

aj+1 ≈ aj + ȧτ . (12)

bTo say that the particle “is seen” at time tevent is shorthand for the more accurate statement: “photons
emitted from the particle’s position at time tevent are seen by the observer at time tobs”. The observer
of course observes the entire sky at a single time tobs.

cThis notation is not meant to imply that lightcone construction is performed on all simulation steps.
j and j+ 1 are only meant to refer to adjacent simulation snapshots in whatever set of outputs is in
use.

3

Creating Lightcones in HACC - CPAC - May 2018

Refer to Figure 1 for a visual summary of the important quantities discussed above.
Again, our ultimate goal is to find tevent for all particles. The remainder of this section
will do this by solving for the quantity δt.

Figure 1: A schematic of lin-
ear particle position extrapolation.
This figure focuses on an arbitrary
timestep bounded by snapshots j and
j + 1, where the vertical axis is
time and the horizontal axis is space.
Time increases upward. The parti-
cle (black disc) is found inside the
lightcone at time tj, and outside the
lightcone at the time tj+1 of the fol-
lowing snapshot. It is estimated to
cross the lightcone, by extrapolation
(red dashed line), at time tj + δt.
Note that the extrapolation does not
in general estimate the correct posi-
tion of the particle at time tj+1.

At this point, we will take the assumption that 0 ≤ δt ≤ τ ≪ 1, retaining up to
second order terms in δt, and assuming that r̈j = 0.de. This allows us to approximate
∥revent∥ as

∥revent∥ = ∥rj + vjδt∥

≈ ∥rj∥+ δt
(rj · vj)
∥rj∥

− δt2

2
(rj · vj)2

∥rj∥3 +
δt2

2
(vj · vj)
∥rj∥

(13)

in order to isolate δtf. Next, we can break the left-hand-side of Eq.(8) into two inte-
grals; one that spans the time from the particle’s lightcone intersection (at aevent) to
the end of the snapshot tj+1 (at aj+1)), and one that spans the remaining history of the
universe: ∫ 1

aevent
c
da
a2H

=

∫ aj+1

aevent
c
da
a2H

+

∫ 1

aj+1

c
da
a2H

. (14)

The first thing to note, here, is that the the bounds and integrand of the latter piece over
[aj+1,1] are entirely known in the simulation parameters and snapshot information,
when we express H as

H(t) =
H0

a(t)3/2

√
Ωm + ΩΛa(t)3 . (15)

dWith certain assumptions made about our time units, the assertion that τ ≪ 1 can seem absurd; know
that our temporal units will ultimately be program time, which is essentially the scale factor. See
§ 4.4 for details.

eIn the case that the lightcone is being constructed in-situ, this assumption is likely appropriate. Con-
structing the lightcone as a post-processing task on the output of the simulation, however, operates
on much more coarsely resolved time steps (the output snapshots are only a downsampling of the
total number of time steps taken in the simulation), and this approximation may be bad. For sim-
plicity, we will retain it throughout this section, but see § 3 for a detailed discussion of nonlinear
effects.

fA subtle approximation made here; write it as ∥r∥2 = (rj + vjδt) · (rj + vjδt), expand, and apply the
binomial series to second order, dropping terms higher than δt2.

4

Creating Lightcones in HACC - CPAC - May 2018

So, we can calculate this integral numerically via Simpson’s rule quadrature, and will
henceforth refer to that result as

Θj+1 ≡ Simpson

(∫ 1

aj+1

c
da
a2H

)
. (16)

Turning our attention to the [aevent, aj+1] piece of Eq.(14), we see that we cannot
trivially numerically evaluate this integral, since we do not know aevent. In our interest
in finding δt, let’s instead solve the integral explicitly, and then approximate the result
by dropping terms higher than δt2. We do this by writing this piece in the form of
Eq.(6) and changing the variable of integration from t to t′ = (t− tj):∫ aj+1

aevent
c
da
a2H

=

∫ tj+1

tevent
c
dt
a(t)

≈
∫ τ

δt
c

dt′

aj + ȧj(t′)

≈ c
aj

[
(τ − δt)−

ȧj
aj

(τ2 − δt2)
2

]
(17)

With that, we have all of the pieces required to cast Eq.(8) in terms of quantities
available in our simulation output. The left hand side of Eq.(8) is replaced with Eq.(16-
17), while the right hand side is replaced with Eq.(13):∫ 1

aevent
c
da
a2H

= ∥revent∥ (8)

↓

Θj+1 +
c
aj

[
(τ − δt)−

ȧj
aj

(τ2 − δt2)
2

]
= ∥rj∥+ δt

(rj · vj)
∥rj∥

− δt2

2
(rj · vj)2

∥rj∥3 +
δt2

2
(vj · vj)
∥rj∥

(18)

which we can then finally solve for δt. The most apparent way to do this is via a
quadratic formula

α · δt2 + β · δt+ γ = 0 (19)

=⇒ δt =
−β ±

√
β2 − 4αγ

2α (20)

where we have

α =
cȧj
2a2

j
+

1
2

(
(rj · vj)2

∥rj∥3 −
(vj · vj)
∥rj∥

)
(21)

β = − c
aj

−
(r1 · vj)
∥rj∥

(22)

γ = Θj+1 +
cτ
aj

−
cȧjτ2

2a2
j

− ∥rj∥ (23)

5

Creating Lightcones in HACC - CPAC - May 2018

We can now solve for tevent = tj + δt for all particles in any snapshot of the simulation
using extrapolation with second order approximations.

If we compute δt in this way for a given particle at snapshot j, and the result is that
tevent > tj+1 (or equivalently δt > τ), then we discard the recovered δt, since we will
almost certainly obtain a better answer if we extrapolate from the next snapshot j+ 1
instead. If tj < tevent ≤ tj+1, then we save it (an entry for this particle is created in the
lightcone output). After doing this for every particle in snapshot j, we then advance to
snapshot j + 1 and repeat the process again. After advancing through all snapshots,
the lightcone will be filled.

2.2 Particle Duplication
Extrapolating particle positions from their velocities at snapshot j to find their lightcone-
crossing time will work in general, albeit potentially inaccurate because of our approx-
imations. Upon more careful consideration, however, particle extrapolation suffers
from the particularly serious ailment of outputting the same particle at two or more
times in the final lightcone.

To understand why this ”particle duplication” happens, consider the diagram shown
in Figure 2. Here, we have a particle whose velocity vj at snapshot j suggests it to be
moving in the +x direction (in the diagram, x is representing all of space rather than
a Cartesian component). Extrapolating it’s position places it outside of the lightcone
at time tj+1 of the next snapshot, and estimates it to have crossed the lightcone at time
tj+ δt. This result is saved and seen in the lightcone output. What actually occurred is
that the particle underwent some kind of interaction, which is temporally unresolved
in the downsampled snapshot outputs, that altered it’s trajectory. Therefore, it’s real
path diverges significantly from the extrapolated estimate. In the extreme case as
shown in Figure 2, the particle won’t actually cross the lightcone at all until some
later time tevent > tj+1, which will also be saved in the output of some later snapshot.
The net effect is that the extrapolation method described in § 2.1 places this particle
on the lightcone twiceg, meaning the observer sees the same object at two different
redshifts. This of course should be impossible without the object exceeding the speed
of light. The converse situation is also true, and equally as serious, in which certain
particles never appear in the lightcone (the true path crosses the lightcone, while the
extrapolated estimate does not).

This duplication error is significant, and effects a few percent of particles, with an
even worse effect on halo lightcone catalogs near 5-10%. The obvious fix for this is to
calculate lightcone-crossing times by particle interpolation rather than extrapolation
(in Figure 2, a new estimated path connecting the two particle positions would be a
much better representation of the true trajectory in green). This approach was not
immediately implemented due to the simplicity of the extrapolation method, and lack
of foresight into the presently discussed bugs of which we are now well acquainted.
Building the lightcone in-situ makes the extrapolation method especially appealing
since no knowledge of the upcoming timestep is needed. In any case, particle posi-
tion interpolation is a necessary requirement for clean and reliable lightcone catalogs,
which is described next in § 2.3.

gOr even more than twice, if the duplication artifact appears more than once for a particular particle.

6

Creating Lightcones in HACC - CPAC - May 2018

Figure 2: A schematic showing the origin of particle duplication issues with the extrapolation approach.
The vertical axis is time, and the horizontal is space. Time increases upward. The particle is found at
snapshot j with an initial velocity pointing in the +x direction. Extrapolating the position based on
this velocity yields the estimated trajectory in red, which crosses the lightcone at time tj + δt. The
particle’s true path is shown in green, which experienced some kind of interaction shortly after the time
tj. Since the particle is actually found inside the lightcone at time tj+1, it must end up crossing the
lightcone againh, thus being seen by the observer at two different times. The path shapes are greatly
exaggerated— no simulation particles reach such relativistic speeds.

2.3 Particle Interpolation
We have taken a very simple approach to the position-interpolation improvement, so
that we would avoid having to perform significant code refactoring (with respect to
the original implementation described in § 2.1). Consider again a particle at position
rj (velocity vj) at snapshot j, and position rj+1 (velocity vj+1) at snapshot j + 1. We
first find an ”equivalent linear velocity”– a constant velocity such that would move the
particle from rj to rj+1 in time τ = tj+1 − tj:

vlinear =
rj+1 − rj

τ
. (24)

This of course requires that, when working on a particular snapshot j in the process
of lightcone construction, we also read in snapshot j+ 1 (not necessary in the original
implementation). Once we have done this, the result of Eq.(20) can simply be fed into
the framework of § 2.1, where vlinear would replace any occurrence of vj. In that case,
Eq.(10), which becomes

||r|| = ||rj + vlinearδt||

=
[
(xj + ẋlinearδt)2 + (yj + ẏlinearδt)2 + (zj + żlinearδt)2]1/2

, (25)

is exactly an interpolation. Eq.(13) is then the approximated interpolated position
which allows us to solve for δt, and the rest of the procedure is unchanged. Obvi-
ously, by using a linear interpolation, we are enforcing a discontinuous derivative in
our particle positions. Really, we could push that discontinuity back to second order
(we could use the velocities vj and vj+1 to perform a nonlinear interpolation, rather
than throwing them away in favor of vlinear). See § 3 for further discussion.

7

Creating Lightcones in HACC - CPAC - May 2018

3 Nonlinear Effects

Through the implementation and testing of the problem solution laid out in § 1-§ 2.3,
we have discovered several shortcomings, in which our approximations manifest as
discreteness effects and other unwanted artifacts in the final lightcone outputs. We
should of course like to minimize these effects, and remove them entirely where possi-
ble, so it will be useful to go over a road map of all approximations made up until this
point, and what their behavior may be in cases of interest.

Our condition defining the lightcone surface, Eq.(8), is exactly correct. Down-
stream, however, we dropped higher order derivatives and terms on each side of this
equation, which we should consider with care. Here is the expanded form of the Eq.(8)
that we derived using discrete simulation outputs, Eq.(18), again:

Θj+1 +
c
aj

[
(τ − δt)−

ȧj
aj

(τ2 − δt2)
2

]
= ∥rj∥+ δt

(rj · vj)
∥rj∥

− δt2

2
(rj · vj)2

∥rj∥3 +
δt2

2
(vj · vj)
∥rj∥

(18)

First, focusing on the left-hand side; the second summand, here, was evaluated as the
integral in Eq.(17). During the second line of that equation, we make the approxima-
tion that a(tj + δt) ≈ aj + ȧjδt, in other words, {dna/dtn = 0 : n ≥ 2}. In principle, we
could analytically obtain higher order derivatives of a(t) from the Friedmann equation,
though the scale factor evolution is quite smooth, and any noticeable impact is doubt-
ful. More importantly, to get the final line of Eq.(17), we perform a first-order Taylor
expansion about aj to evaluate the integral. In doing this, we have again invoked the
assumption that δt ≪ 1, which seems acceptable on paper, though the direct effects of
this particular approximation are probably not fully understood.

Turning our attention to the right-hand side of Eq.(18); as done with the scale factor,
we have assumed that {dnr/dtn = 0 : n ≥ 2}. For the extrapolation approach, this is
the best that we can do, as no acceleration data is exposed to us. For the interpolation
routine, however, we could make an estimate of r̈ as (vj+1 − vj)/τ, which would relax
the restriction that all particle trajectories be represented as linear functions. This
may be a desired change to make, though ultimately, the second line of Eq.(13) will
still require choosing a center for the Taylor expansion. We choose to use the point aj
to center our expansions, which may be as good as any.

Finally, we must note that, in the code, we do not actually evaluate the traditional
quadratic form as is written in Eq.(20). Rather, we perform an approximated quadratic
solution, expanded to second order, which is

α · δt2 + β · δt+ γ = 0

=⇒ δt =
−β ±

√
β2 − 4αγ

2α

≈
−γ
β

−
αγ2

β3 (26)

We do this to minimize potential numerical instabilities associated with evaluating the
full quadratic solution. There are many such possible instabilities, e.g. the case when

8

Creating Lightcones in HACC - CPAC - May 2018

4αγ is small compared to β2, and the sign β and that of the radical term are the same,
will give us catastrophic cancellation. One can try to avoid this problem by also using
the Citardauq Formula, which inverses the sign of the radical term for any particular
solution, and choosing to use the more stable expression for the root δt. We have,
for nothing more than simplicity, instead made the more casual decision to use the
approximated solution, Eq.(26), which still does eliminate numerical artifacts which
otherwise cause the volume of our lightcone output to explode at high redshifts.

While we have not dug deep enough to discover the all of the specific influences
that each of the above discussed approximations have on our answer, we are aware
that compounding all of them has adverse effects. The statistic in which this is most
obviously seen is the comoving-distance-redshift relation. We consistently find that
our solution over-estimates the distance to the lightcone surface at the high-redshift
end of each timestep bounded by snapshots j an j + 1, as illustrated in the toy plot
given in Figure 3a. Specifically, we see that particles whose lightcone crossing time
was found to be δt → 0 are around ~0.5Mpc too far from the true lightcone surface (the
black curve in Figure 3a). Alternatively, we can think of this effect as simply being an
apparent increase in the speed of light, in some way due to our approximations.

In response to this issue, we offer what may be seen as a workaround if not a remedy.
Notice that the distance-redshift relation recovered from our solution (red curve in

(a) (b)

Figure 3: A toy-figure showing all the qualitative features of the comoving distance-redshift relation,
as recovered from the output of the lightcone problem solution described in § 1-§ 2.3. Fig(3a): The
output relation if we apply the particle interpolation routine to Eq.(18-23). Due to our approximations,
the relation departs from the truth by a maximum of ~0.5Mpc at the high-z end. This error repeats
for each step j, introducing a sawtooth pattern in the relation. Fig(3b): The same as Fig(3a), with
the same relation overplotted, in the case that we replace Θj+1, in Eq.(18) and Eq.(23), with Θj. The
error in these two answers appears symmetric, and we can take a weighted average of the two answers
to mitigate our approximation errors. Doing this ultimately gives a maximum departure from the true
relation of ~100kpc.

Figure 3a) is exactly correct for particles that cross the lightcone at δt = τ. To
understand this, let’s look more closely at the LHS of Eq.(18):∫ 1

aevent
c
da
a2H

=

∫ aj+1

aevent
c
da
a2H

+

∫ 1

aj+1

c
da
a2H

=
c
aj

[
(τ − δt)−

ȧj
aj

(τ2 − δt2)
2

]
+Θj+1

9

Creating Lightcones in HACC - CPAC - May 2018

From here, it should be clear that we expect a good answer at δt = τ, because in
that case, aevent = aj+1, and the integral over [aevent, aj+1] vanishes. That only leaves
the integral represented as Θj+1 to worry about, which is just a numerical Simpson’s
method calculation. Simpson’s method can be as accurate as we’d like it to, with such
a smooth function, and all of our approximations in a(t) have dropped out.

Given this, we see that there is a symmetry to be taken advantage of in this problem.
We’d like to calculate the entire integral over [aevent,1] numerically, though we cannot
trivially do that, since our lower integration bound is unknown. We therefore made
the arbitrary choice to split this integral into [aevent, aj+1] and [aj+1,1] pieces, though
we could have just as well come up with the following arrangement:

∫ 1

aevent
c
da
a2H

=

∫ 1

aj
c
da
a2H

−
∫ aevent

aj
c
da
a2H

= Θj −
c
aj

[
δt−

ȧj
aj

δt2

2

]
, (27)

where we have introduced Θj as

Θj ≡ Simpson

(∫ 1

aj
c
da
a2H

)
. (28)

Eq.(26) leads to the exact solution for δt as given in Eq.(19-23), except that the
constant term in the quadratic has it’s summands involving τ removed, and Θj+1 is
replaced with Θj:

γsymmetric = Θj − ∥rj∥ . (29)

If we re-solve for δt (Eq.(26)) using this new constant quadratic term, then we should
now have perfect agreement with the true distance-reshift relation at high-z, rather
than low, with our approximations now manifesting as error at low-z. This is shown
in Figure 3b, and we will refer to the result of solving for δt in this revised calculation
as δtsymmetric.

Now that we have established a way to move the approximation-induced error to
opposite ends of the time domain of a simulation step, we can leverage this symmetry
by using a weighted average of our two measures of the lightcone crossing time per
particle, δt and δtsymmetric. As should be clear from the curves in Figure 3b, the weights
for this average should be something like δttrue/τ. Since we do not have δttrue, and have
no real way to assert the accuracy of δt against δtsymmetric, or vice-verse, we will use
the mean value of these two vales in the weighting:

w =
δt+ δtsymmetric

2

/
τ (30)

with our improved lightcone crossing time given as

δtw+ δtsymmetric(1 − w) (31)

10

Creating Lightcones in HACC - CPAC - May 2018

This procedure results in the ~0.5Mpc/h error in the distance-redshift relation at the
earlier timestep endpoint, mentioned above, being reduced to a maximum of ~100kpc
at the center of the timestep (the new error is the dashed purple curve in Figure 3b,
which is still not quite zero, since the concavity of each solution has the same sign).

Now, let’s emphasize an important point; this workaround, while clever, is cumber-
some and inelegant. The ideal way to deal with nonlinear effects is to take a fully
numerical approach. That is, both integrals of Eq.(14) should be solved iteratively,
rather than one of them being given an approximate analytical evaluation. In other
words, the second summand on the LHS of Eq.(18) should also be a numerical evalu-
ation. To reiterate once more, this seemingly obvious task is nontrivial due to the fact
that one of the integration limits itself is bound up in the RHS of Eq.(18). Finding a
solution, however, should be doable for a physicist with free research time (i.e. not me
or any other contributors to this document). But we do promise, it would be fun!

4 Implementation

This section will describe where and how, in HACC, each of the components of the
lightcone construction (§ 1 - § 3) are performed. What follows is written with frequent
reference to the structure of the HACC framework and its important classes, though
familiarity is not necessarily assumed, on the part of the reader. Special attention
will be given to discussing the units of various quantities involved, which proves to
be a nuanced and sub-optimally documented ingredient of the codebase. If one finds
difficulty in understanding, or developing, any lightcone-relevant codes such as those
described here, time should be afforded for careful dimensional analysis.

§ 4.1 introduces the lightcone driver and gives an overview of the input parameters
and options. § 4.2 gives a detailed look at the problem geometrically, explaining the
details of simulation box duplication, and § 4.3 describes the location of all components
of the solver. § 4.4 makes sense of the units of the important quantities in the problem,
and § 4.5 finally describes all output products.

4.1 Parameters & Options
The source files for this project are located in /hacc/nbody. The driver for the inter-
polation scheme (§ 2.3) is at /nbody/simulation/driver_lc_interpolation.cxx,
and its main() function takes six arguments:

1. <paramName> path to a HACC param file
2. <outName> output file path
3. <inName> input file path for snapshot j particle data
4. <stepNumber> step number j
5. <nextInName> input file path for snapshot j+ 1 particle data
6. <nextStepNumber> step number j+ 1

Table 1: Input parameters for the lightcone driver’s main() function

Likewise, the driver for the original extrapolation code (§ 2.1) is found at
/nbody/simulation/driver_lc.cxx, and takes the same arguments as listed above,

11

Creating Lightcones in HACC - CPAC - May 2018

Table 2: Parameter file options most relevant to lightcone construction

Option Type Description

1. LCX,
LCY,
LCZ

float The cartesian x, y, or z position, respectively, of the lightcone
origin (observer) in physical Mpc/h

2. LC_ALL_OCTANTS_X,
LC_ALL_OCTANTS_Y,
LC_ALL_OCTANTS_Z

bool Whether or not to generate lightcone output in both sky oc-
tants along the cartesian x, y, or z directions, respectively i

3. LC_REPLICANTS int The number of simulation boxes to replicate along one axis, in
the positive direction, not including the initial volume j

4. LC_REDSHIFT float The extent of the lightcone specified as a redshift. This
value is used to determine LC_REPLICANTS automatically if
LC_USE_REDSHIFT is TRUE

5. LC_USE_REDSHIFT bool Whether or not to allow the driver to calculate LC_REPLICANTS
itself, given the value of LC_REDSHIFT k

6. LC_AUTO_REDSHIFT bool Whether or not to allow the driver to automatically set
LC_REDSHIFT to be the redshift of the input step, with a 10%
padding, given that LC_USE_REDSHIFT is also TRUE l

7. LC_ROTATE bool Whether or not to apply random rotations to simulation box
replications

8. LC_ROTATE_SEED int Seed for random box rotations

8. OUTPUT_FRACTION float Fraction of input particles to output, in the range [0,1]

9. LC_FULL bool Whether or not to use the full input dataset (as given by
parameter 3. in Table 1). If TRUE, then the value for
OUTPUT_FRACTION is ignored.

10. LC_SOLVER_NONLIN bool Whether or not to use the full numerical lightcone crossing-
time solver (not yet implemented; motivated in § 3)

11. LC_REVERSE float Whether or not to reverse the solver, projecting objects at time
tj+1 backward, rather than objects at time tj forward.

12. LC_MIN_MASS bool The minimum mass that a simulation object must be to be in-
cluded in the lightcone output m

13. LC_WRITE_ORIG_POS bool Whether or not to write out the original object positions (from
the base snapshot), rather than only the extrapolated or inter-
polated positions found at the lightcone crossing time.

iIf the x, y, and z versions of this option are all set to FALSE, then the lightcone generated is one octant
of the sky. Having only one of these options set to TRUE will produce a quarter sky, etc., and all of
them being set to TRUE will output a full-sky lightcone.

jThough this option specifies the number of replications along one axis, the box replication actually
occurs along all three cartesian axes. It also occurs in both the negative and positive direction for
each axis kwhere L_ALL_OCTANTS_K = TRUE. Thus, finding the total number of replications requires
a calculation, which is described in § 4.2.

kIf this option is TRUE, then the param file entry for LC_REPLICANTS is ignored. Otherwise,
LC_REDSHIFT is ignored

lTherefore, if both this option and LC_USE_REDSHIFT are set to TRUE, the decision of the number of
simulation box duplicates is fully automated, and the param file entries for both LC_REPLICANTS and
LC_REDSHIFT are ignored

mThis option is relevant in the case that the lightcone is being built from halo datasets, or some other
object that varies in mass, rather than gravity-only mass particles.

12

Creating Lightcones in HACC - CPAC - May 2018

excluding <nextInName> (finding lightcone crossing times using extrapolation does not
require knowledge of a particle’s position at step j+ 1). The remainder of this section
will apply equally to either the approaches of § 2.1 or § 2.3 unless otherwise noted.

Running the driver code begins by initializing MPI, and then creating an instance
of the MC3Options class. This object is known to the driver as options, and is the
interface through which run parameters are stored, set, and retrieved. The state of
the options object is modified, with respect to the default constructor, by the content
of a Basedata object in charge of reading the parameter file (argument 1 in Table 1),
which is expected to have been passed by the caller of the lightcone driver. Valid
parameter file options most relevant to the building of lightcones using this code are
given in Table 2 below.

At this point, any reader that finds the content of Table 2 to be clear may decide
to skip to § 4.3. Otherwise, § 4.2 gives a very detailed description of the geometry
of the problem we are trying to solve, which many of the options in Table 2 concern
themselves with.

4.2 Geometrical Considerations
Before touring the rest of the code, we should discuss how best to visualize the ge-
ometry of the problem in the context of cubic cosmological simulation volumes. This
discussion will highlight the purpose and usage of most of the options in Table 2 that
may appear somewhat abstruse.

An important characteristic of numerical simulations that have guided our problem-
solving thus far is that information is only known at discrete time snapshots. Our
approach, conclusions, and notation all acknowledge this limitation. However, we
have, thus far, implicitly assumed that we have infinite spatial information, or at least
that we have spatial information out to the furthest possible extent of our lightcone.
Of course, this is not true; the largest simulations volumes that have been run are ex-
panding cubes whose comoving side-lengths are in the neighborhood of 4Gpc/h. If we
place an observer at the corner of one such simulation volume, to what extent can our
lightcone reach? The lightcone surface is a spherical object centered on the observer,
and it’s radius could not exceed, in this case, a comoving distance 4Gpc/h— a dis-
tance which light will cross in a reasonable amount of time, and, assuming a WMAP7
cosmology, only allows our observer to see to a maximum redshift of ~2.3.

On top of this distance limitation, we have also introduced a direction limitation;
situating our observer in the corner of the box maximizes the radius of the lightcone,
but only allows one octant of the sky to be seen. Placing an observer, instead, in the
center of the box allows for a full-sky lightcone to be generated, but in that case the
lightcone extent would be reduced to redshift ~0.8. These issues are of course only
more constraining with smaller simulation volumes.

Surely we would like to fill lightcones with simulation particles/objects to any ar-
bitrary redshift we choose, and surely we would also like the option to do so over the
entire angular domain of any observer. Our solution is to grow the spatial extent of
our simulation output, effectively, by replicating the box many times and “tiling” these
replications in space. This idea is shown visually in Figure 4. For example, if we’d
like to fill an all-sky lightcone out to a redshift of 2 (a comoving distance of ~3.7Mpc/h
givenWMAP7) with particle output from a 2Gpc/h simulation, we would replicate the

13

Creating Lightcones in HACC - CPAC - May 2018

box once in each cartesian direction for a limiting lightcone radius of 4Gpc/h.
While implementing this replication technique does solve the issues described above,

and allows us to generate a lightcone to any arbitrary redshift, it introduces some fur-
ther complications of its own. If we carelessly replicate the simulation volume many
times, the presence of repeating large-scale structure will start to become visually
obvious, and inject artifacts into various statistics, e.g. power spectra, redshift distri-
butions, etc. For this reason, the code has been given the capability to randomly rotate
each replication by swapping the x, y, and/or z positions and velocities of its particles.
This solution, in turn, has yet another side-effect: before rotating the replicated boxes,
they are all seamlessly joined to each other due to the periodic boundary condition of
each box edge. This property will be lost after randomly-rotating each volume, and
discontinuities can be created at box edges (filaments and halos may be clipped).

In short, we are forced to decide between introducing either repeating large-scale
structure, or large-scale edge effects, into the lightcone output. The latter has tended
to be the less significant problem. These issues are further detailed in Figure 5, where
the box replications along a single axis are visualized.

(a)
(b)

Figure 4: A comparison of the problem geometry in the case that one simulation volume is used, with
the case that the volume is replicated and tiled. Fig(4a): A view of a simulation volume containing
a lightcone, filling an octant of the sky, being generated with respect to an observer placed at the
origin (bottom left corner). The spherical shell is the extent of the lightcone (a surface upon which lie
the furthest, and youngest, objects that the observer can see) at some time t. Since the extent of the
lightcone has not reached the other side of the box yet (light from the other side of the box has yet to
reach the observer), it is true that t < L/c, where L is the box length. Notably, we cannot generate
a lightcone, using this simulation volume, to allow the observer to see events occurring beyond a time
tmax > L/c into the pastn. Fig(4b): A view of a full-sky lightcone now being generated across a tiling of
duplicated simulation boxes. The red volume indicates the initial volume shown in Fig(4a). Notice that
now we have eight times the sky-coverage, without having had to reduce the radius of the lightcone. We
can replicate the simulation boxes as many times as we’d like to produce an arbitrarily large lightcone.

nMore accurately, if we consider cosmological dynamics as discussed in § 1, it is true that setting
tobs = t in Eq.(6) will yield a distance of ||r|| < L, and that we cannot enable the observer, using
this simulation volume, to see events occurring more than a time tmax into the past, such that setting
tobs = tmax in Eq.(6) gives ||r|| = L.

14

Creating Lightcones in HACC - CPAC - May 2018

Figure 5:oA comparison of the con-
sequences of simulation box repli-
cations, with (Fig(5b)) and with-
out (Fig(5a)) enabling random ro-
tations. The problem of repeat-
ing LSS is clear in Fig(5a), as the
density along the lower box edge
is noticeably higher than the top
edge. Repeating structures along
this lower edge have very little an-
gular separation in the observer’s
line of sight, making the effect par-
ticularly strong. These issues are
cured in Fig(5b), though some den-
sity discontinuities are obvious (not-
edly along the vertical edge sepa-
rating the initial and first replicated
volumes).

With all of this in place, we are equip to parse the meaning and usage of the options
listed in Table 2. Option 7 in Table 2, LCRotate, is simply a boolean value which turns
the box replication rotation, as described above, on or off. Option 8, LCRotateSeed is
self-explanatory, though it is worth taking a moment to note that the random number
generator at work here, given a constant seed, gives reproducible results in general
when running in parallel; this means that the MPI topology is free to change without
effecting the spatial configuration of the output (for instance, one may desire to run a
full particle lightcone to obtain shear maps, and also a corresponding galaxy lightcone,
where the galaxy lightcone requires many fewer nodes to compute in a reasonable
amount of time. The rotations of each simulation box replication would be preserved
between these two runs).

Options 2-6 in Table 2 ought to be treated more carefully. Option 3 gives the number
of box replications desired, along one axis, in the positive direction. Options 2 deliver
three boolean values to the code which control the sky-coverage of the lightcone (see
footnote j). How these options are actually operating on the spatial configuration of
the problem are as follows: setting LCAllOctantsX to TRUE will replicate boxes in both
the positive and negative x directions, and likewise for the Y and Z variants of this
option. Therefore, in order to actually calculate the number of replications, something
like following operation is performed:

int NumRepsX = LCReplicants+1 + (LCAllOctantsX ? 1 : 0)*(LCReplicants+1);
int NumRepsY = LCReplicants+1 + (LCAllOctantsY ? 1 : 0)*(LCReplicants+1);
int NumRepsZ = LCReplicants+1 + (LCAllOctantsZ ? 1 : 0)*(LCReplicants+1);
int numBoxesTotal = NumRepsX*NumRepsY*NumRepsZ;

Let’s dissect the declaration of NumRepsX; why is it that each time LCReplicants is
used (the value of Option 3 defined by the user), it is incremented by one? The leftmost
+1 is adding the initial simulation volume to the total box count, and the rightmost +1
is to keep the total replicated volume symmetric across the y-z plane. This means that
oCredit for the cosmic web image used in the creation of this figure to Benedikt Diemer:
http://www.benediktdiemer.com/visualization/images/

15

Creating Lightcones in HACC - CPAC - May 2018

if LCAllOctantsX is true, then the number of replications in the x direction is doubled,
which makes sense. This all of course holds for the Y and Z variants of the quantity as
well.

The potential clumsiness of the last few paragraphs suggest that a figure would be
most helpful at this point, so let’s return to our example as stated on page 13. There,
we imagined constructing a full-sky lightcone out to a redshift of 2 (comoving distance
of ~3.7Mpc/h) using a 2Gpc/h simulation. We said that this would require one box
replication, in each cartesian direction, yielding a volume capable of building, at most,
a lightcone with an extent of 4Gpc/h. Figure 5 shows the x-y plane of the presently
discussed situation. Does this plan make sense, given the behavior of Options 2 and
3 described above? It does, if we define these options properly. The problem outline
above suggests that we use the option values

LCReplicants = 1
LCAllOctantsX = LCAllOctantsY = LCAllOctantsZ = TRUE .

Were we only looking to generate an octant of the sky, we would change the latter
three of these options to

LCAllOctantsX = LCAllOctantsY = LCAllOctantsZ = FALSE .

Figure 6: A visualization of the spatial configu-
ration of the simulation boxes being duplicated in
the example problem discussed on page 16. The
initial 2Gpc/h volume is tinted red. Recall that
LCReplicants was set to 1 in this example, mean-
ing that one box will be replicated in the posi-
tive direction of some single cartesian axis. With
the added consideration of the initial volume, that
makes two box lengths of data from the observer at
the origin to the lightcone extent. Since we have
specified that we would like to generate a full sky,
we replicate two more boxes in the negative direc-
tions. The extent of the lightcone that we desire to
build is shown by the dark circle, at ~3.7Mpc/h, and
the largest possible lightcone that this box configu-
ration could accommodate is shown as the dashed
circle, at ~4Mpc/h. In this example, we see 16 total
simulation volumes, or 64 total volumes if we also
consider those replicated in the z direction (omit-
ted from this figure). Solving the expression for
numBoxesTotal on pg. 15, given our parameter
choices, agrees with this figure.

Finally, as a last consistency check, it should now be easy to understand that the
options necessary to generate the configuration shown by the bold-faced boxes in Fig-
ure 3b would be

LCReplicants = 0
LCAllOctantsX = LCAllOctantsY = LCAllOctantsZ = TRUE .

16

Creating Lightcones in HACC - CPAC - May 2018

In summary, the behavior of LCReplicants isn’t necessarily intuitive— it acts this
way so that one need only find the number of box-lengths required to reach the desired
lightcone radius, in one dimension, to specify the number of replications (remembering
that the initial volume does not count as a “replication”).

Now, we can briefly describe Options 4-6. If Option 5, LCUseRedshift, is set to
TRUE, then the code will look toward Option 4, LCRedshift to calculate LCReplicants
internally. This was implemented as a convenience to the user— since lightcones,
as a part of science projects, are usually planned to extend to a particular redshift,
rather than a distance, the user would have to manually convert this redshift to a dis-
tance under the cosmology of the simulation run, and then find the necessary value
of LCReplicants. Specifying the redshift of the lightcone instead, via Options 4&5,
prompts the code to solve the integral given in Eq.(16) to compute the necessary
LCReplicants, by setting the lower integration bound aj+1 to 1/(1+LCRedshift)
(recall the discussion about Eq.(8) to see why this works).

This still leaves work for the user, however, since the lightcone code is run on a
snapshot-by-snapshot basis. If a user is running the snapshot output of step 487
(z ≈ 0.02) through the lightcone solver, as part of an effort to build a lightcone to
z = 3, then they will cerainly be doing far more calculations than is necessary if
LCRedshift=3 (which will replicate the volume many times). To combat this last
complication, Option 6 is offered. If both Option 5 and Option 6, LCAutoRedshift,
are set to TRUE, then the LCRedshift, and hence LCReplicants, will be computed
internally. This works by simply calculating the redshift of the input snapshot number,
plus a 10% redshift padding, to set the value of LCRedshift.

In summary, generating a lightcone using this code offers three distinct parameter
usages, as they relate to box replication:

1. LCUseRedshift=LCAutoRedshift=FALSE
LCReplicants = some integer

2. LCAutoRedshift = FALSE
LCUseRedshift = TRUE
LCRedshift = some value

3. LCReplicantsLCUseRedshift = LCAutoRedshift = TRUE

Use case 1 in the list above will offer full control to the user in specifying the details
of the problem configuration. Use case 2 is slightly more convenient, while use case 3
will minimize the calculations demanded from the user, lowering the potential for error,
and possibly allow the user to forget most of the present section of this document.

4.3 Code Layout
Let us recall the discussion as left at the end of § 4.1. After the first few tasks per-
formed by the lightcone driver, we now have MPI initialized, with MC3Options and
Basedata objects storing our run parameters (including those so explicitly treated in
§ 4.2). In a moment, two more important objects will be introduced, though I will not
subsequently continue to detail every operation and all HACC objects created by the
driver, as that is a job better left to the in-line documentation, of which there is plenty.

17

Creating Lightcones in HACC - CPAC - May 2018

This section will, instead, offer a high level road-map of where the various steps of the
problem solution are carried out.

To borrow the notation introduced in § 2.1, consider running the driver on a timestep
bounded by snapshots j and j+ 1. The original extrapolation version of the driver
(nbody/simulation/driver_lc.cxx) continues by reading the snapshot j particle data
from a specified gio file (parameter 3 in Table 1). Now, for the two important objects
mentioned above; a ParticleActions object (henceforth pa) is then created, as well
as two TimeStepper instances for keeping track of z-dependent cosmological param-
eters at times tj and tj+1. The member functions of pa are what perform most of the
calculations that we care about in solving for lightcone crossing times, and they are
found at nbody/cpu/ParticleActions.cxx.

Moving on; if LCUseRedshift and/or LCAutoRedshift (see Table 2) are given as
TRUE by the user, then the function pa.calcLCReplicants() is called, which performs
some of the duties laid out in § 4.2. Ultimately, the particle data is passed to
pa.map_lc() , which in turn calls the solver code at pa.update_lc().
pa.update_lc() is where most of the magic happens. The box replications are

assigned random rotations, positions and velocities are scaled to the proper units
(see § 4.4), and some prerequisite computations are done to prepare for running the
solver code. Eq.(15), the time-dependent Hubble parameter, is calculated in pa.Hat().
Eq.(16,28), Simpson’s rule numerical integrations giving the distance from the ob-
server to the lightcone extent at tj+1 and tj (which the code denotes as A rather than
Θ), is found in pa.calcA().

With all of this in place, the particle data can be passed to the solver function, ei-
ther pa.calc_dt() or pa.calc_dt_nonlinear(), depending on the value of the option
LCSolverNonlin. The former of these solver functions ultimately implements Eq.(31)
in § 3, and the latter is yet to be implemented. After this routine has been visited by
every particle, in every box replication, the results are written out in gio format via
pa.writeLC(). The specific form and content of this output is described in § 4.5.

The particle interpolation version of the driver (driver_lc_interpolation.cxx)
does all of the things discussed thus far, with some additions. In that case, we need
particle position information at both snapshots j and j + 1, so two gio files are now
read in (the second given by parameter 5 in Table 1). For each particle belonging to
snapshot j, we use a binary search algorithm to find its location also in snapshot j+ 1.
With this mapping completed, we may interpolate the particle’s position, which is done
exactly as described in § 2.3. If any particle from snapshot j is found to have no match
in j+ 1, which can happen, then we default the calculation of δt for that particle to the
extrapolation method (we do not update its velocity).

4.4 Units

This section, as promised, gives a careful look at the units of the important quantities
in this problem, and their transformations. Particle coordinate values are converted
between different systems in HACC via the ParticleCoords class, whose constructor
is called as

ParticleCoords(units, scope, periodic, symplectic)

18

Creating Lightcones in HACC - CPAC - May 2018

where the latter two arguments are expected to be boolean values. The particle data is
read in from the input snapshot files by the driver in the same form that they are writ-
ten out by the simulation, where units=PHYSICAL, scope=GLOBAL, periodic=true,
symplectic=false. PHYSICAL specifies that particle coordinates are given in physical
units (Mpc/h for positions, and km/s for velocities) and GLOBAL says that those coor-
dinates are given with respect to the global simulation origin (as opposed to the local
origin of the MPI rank to which the particle belongs). periodic refers to the boundary
conditions of the coordinates, while symplectic specifies whether or not velocities are
multiplied by a factor of a2.

Now, are these the proper units for our quantities to be in with respect to our solution
strategy derived in § 1-§ 2.3? The answer is no, and some transformations are going
to be required. It should at least be immediately clear that the unit mismatch between
our particle positions and velocities is of no help, since we seek to use those velocities to
approximate new positions (either by extrapolation or interpolation). To understand
what is about to happen, let’s print the first term of the approximated quadratic form
which we are using to compute δt, Eq.(26):

δt ≈
−γ
β

=

[
−Θj+1 −

cτ
aj

+
cȧτ2

2a2
j
+ ∥rj∥

]/[
− c
aj

−
(rj · vj)
∥rj∥

]
(32)

All of the summands in the numerator on the right hand side of Eq.(32) clearly need
to have dimensions of length, which is asserted by the ∥rj∥. The quantity on the left
hand side, δt, is a time, implying that the units of the denominator on the RHS must
have dimensions of length/time. So, we can fix our velocity units to be km/s, and apply
conversions to our times and lengths, or vice-verse. The latter is the obvious choice,
since we should certainly like to keep our lengths as a comoving unit, and our time
units defined with respect to the scale factor a.

τ is the temporal width of the timestep bounded for snapshots j and j + 1, which is
supplied in HACC via the TimeStepper class as a dimensionless program time (hence-
forth pt), which is some power of the scale factor; pt ≡ aα, where α is typically chosen
to be 1p. Given that our distances are in units of Mpc/h, our velocities must be scaled
to units of (Mpc/h)/pt, including that of c. Note that occurrences of H and ȧ must
also undergo this conversion, since their unit definitions contain km/s, as given by the
TimeStepper and Eq.(15).

Carrying out the dimensional analysis of Eq.(32) with these changes does indeed
give the units of δt as dimensionless program time, which is desired. For further
convincing, unit analyses can be performed on the entirety of Eq.(26), and also Eq.(29-
31), to prove that these dimension choices are correct for the implemented quadratic
solution, as well as the symmetric calculation and weighted average δt.

Now, the conversion described above turns out to be slightly involved. Assuming
that we have velocities in km/s, then we need a conversion factor with units of s/(h·pt).
Multiplying our velocities by this value should produce the dimensions we are after.

pα, here, is an input parameter given by the user running the simulation. To understand the choice
to use a power of the scale factor as the program time variable, see the RRU Simulation and Code
Overview.

19

Creating Lightcones in HACC - CPAC - May 2018

We can start by trying to obtain an expression relating physical time to program time;
we know that

H =
ȧ
a
=

da
dt

a−1 , (33)

and we can use this to find the operator d/dt:

aH =
da
dt

dt(aH) = da
d
dt

= aH
d
da

(34)

which is what we stated in Eq.(7). We can use the presence of the scale factor a, here,
to involve the program time pt ≡ aα via the chain rule:

d
da

=
d
dpt

αaα−1 . (35)

Combining Eq.(34) and Eq.(35) leaves us with

d
dt

= aHαaα−1 d
dpt

. (36)

Eq.(28) has a temporal differential on each side, and acting those operators on a generic
position r gives us

dr
dt

= vphys = aHαaα−1 dr
dpt

= aHαaα−1vpt (37)

which makes it clear that our conversion factor must be

1
aHαaα−1 (38)

and must have units of s/pt (since the units of vphys and vpt are km/s and km/pt, respec-
tively). We must not forget that we’d also like our distances in comoving coordinates,
so finally we multiply the conversion factor Eq.(30) by h/h, where h in the numerator
becomes part of the value, and the h in the denominator becomes part of the units (re-
minded by the italics, or lack thereof). In summary, we learn that we can convert our
physical velocities (including c) to dimensions of [comoving distance]/[program time]
by multiplying them by

h
aHαaα−1

s
h · pt

(39)

and also that, we can’t forget, we can also convert our values of H and ȧ to the proper
units by multiplying by Eq.(38). This is precisely what the lightcone solver does; in
pa.update_lc(), the variable s_pt holds the conversion factor obtained from eval-
uating Eq.(38), and likewise the variable scale_vel for Eq.(39). Any outstanding
opaqueness should be able to be cleared via a careful reading of the in-line docu-
mentation, and a sufficient understanding of HACC’s coordinate conversion utilities
(namely, the member functions of ParticleCoords, which make use of the various
Domain::grid2phys_() offerings).

20

Creating Lightcones in HACC - CPAC - May 2018

4.5 Output
The output of the lightcone code looks very much like simulation snapshot output;
GIO files are written out for each snapshot that the code is run on, with a data row per
particle/object. Rows have at most 17 columns, each corresponding to some property
of the object, which are enumerated in Table 4. The structure of the output directory
is fully dependent on the nature of the job submission script written by the user (where
parameter 2 of Table 1 is defined), though the convention is to end up with something
that looks like Figure 6.

Most of the output quantities described in Table 4 are sufficiently clear, though two
of them, rotation and replication require further explanation. The former gives

Figure 7: The conventional output direc-
tory structure resultant from running the
lightcone solver on at least the first four
snapshots of some simulation which ran
through a total of 500 full timesteps. The
hashed (#) filenames indicate portions of
the output that were written by differ-
ent MPI ranks; only the unhashed file-
name (the “header”) need be passed to
GIO in order to read the output. Notice
that step 499 has no lightcone output—
this makes sense; step 499 corresponds
to z = 0, which is the time of observa-
tion. The lightcone volume, then, at step
499 is of course zero (setting aevent = 1
in Eq.(8) gives ||r|| = 0, telling us that
the only events that the observer can see
at z = 0 are those that have zero spatial
separation from them self).

outputDir

lc499

lc487

lc_output_487.gio

lc_output_487.gio#8

lc_output_487.gio#33

lc475

lc_output_475.gio

lc_output_475.gio#11

lc_output_475.gio#9

lc464
...

...
...

an identifier, for each object, denoting the coordinate transformation that was applied
to the simulation replication which hosts the object. This identifier is an integer i
where i ∈ [0,5]. The meaning of those values are as follows:

Table 3

value of
rotations 0 1 2 3 4 5

transformation
applied

none x ↔ y y ↔ z x ↔ y,
y ↔ z

z ↔ x x ↔ y,
z ↔ x

where the “swap operator”↔ acting on two dimensions n andm is n ↔ m =

(
0 1
1 0

)(
n
m

)
,

and a comma between two of these transformations means “followed by”.
The latter output product, replication, is again some integer identifier for each

object, this time specifying the box replication to which the object belongs. This is
useful information to have because, for example, one may find multiple particles , let’s

21

Creating Lightcones in HACC - CPAC - May 2018

call them p and q, with the same id in some lightcone output. If p resides in the
initial simulation volume, while q resides in some distant replication of the volume,
then all is well (p and q are effectively different objects)q. If p and q reside in the
same volume, however, then that would be indicative of a bug of the § 2.2 variety. In
general, someone doing analysis with lightcone catalogs may need this information.

So, we give each replication a unique 32-bit integer identifier, within which is packed
it’s spatial coordinates in units of box-lengths. Each coordinate (x, y, z) is allotted
ten of these bits (2 bits leftover), with the specific anatomy of the value shown in
Figure 7. Note that, under this scheme, the initial volume containing the observer is
not at (0,0,0). Rather, the origin of this setup is at the positive corner replication (for
example, the top-right box in Figure 5), which puts the initial volume at x = y = z =
LCReplicants. This is done to avoid having to bit-shift negative signed integers.

Figure 8: The anatomy of the 32 bit integer, replication, as found in the lightcone output. The first
three sets of ten bits, starting from the left, are the x, y, and z positions of the replication, respectively,
in units of box lengths. In this example, the considered replication is found at (2, 1, 1). There are two
unused trailing bits.

replication = 00 0000000010 0000000001 0000000001
x y z

One can therefore easily extract the coordinates of each box replication by bit shifting
and masking:

x = replication >> 20
y = (replication >> 10) & 0x3ff
z = replication & 0x3ff

It is perhaps worth noting that, since each box coordinate is allowed a maximum of ten
bits, we must have LCReplicants ≤ 1024 for an octant sky, and LCReplicants < 512
for a full-sky lightcone. This is no problem, as our number of replications will never
be nearly this large; even with a small simulation volume of 256Mpc/h, a lightcone
built to utilize all 512 box replications along it’s radial axis would reach far beyond the
redshift limits of typical simulation output (where z ≤ 200).

Table 4: The output properties for each particle/object that passed through the lightcone solver

Output Column Typer Description

1. x,
y,
z

float The cartesian x, y, or z position, respectively, of the object at
the time tj+ δt (given by either interpolation, § 2.3, or extrap-
olation, § 2.1) in comoving Mpc/h.

Continued on next page

qin fact, one could expect up to as many duplications of particle p as there are simulation boxes, that
is, numBoxesTotal as computed on pg. 16. The values of replication for each of these particles
should be unique.

22

Creating Lightcones in HACC - CPAC - May 2018

Table 4 – Continued from previous page

Output Column Typer Description

2. vx,
vy,
vz

float The x, y, or z velocity components, respectively, of the object
at the time tj + δt (given as vlinear if interpolation was used
(§ 2.3) or as vj if extrapolation was used (§ 2.1)) in physical
km/s.

3. id int The id of the object as found in the input object catalog (per-
haps particle ids coming from snapshot files, or halo tags com-
ing from merger trees, etc.).

4. a float the scale factor a(t) at the time the object crossed the light-
cone, t = tevent = tj + δt.

5. step int The simulation snapshot from which this object originated
(where it’s position at time tevent was approximated from).

6. rotation int An identifier giving the coordinate rotation that was applied
to the simulation box replication in which this particle resides.
Possible values are 0-5, which are discussed in the text.

7. replication int A unique identifier specifying which simulation box replication
this object resides in. A method for extracting information
about the spatial position of this box replication identifier is
given in the text.

8. mask int A 16 bit mask, where each bit represents the state of some
flag relevant to the simulation run. In the lightcone output,
this value is simply set to 1 for all particles, though it could
conceivably be used to specify flags that may be useful.

9. phi float The scalar potential used by the gravity solver during the sim-
ulation run. This value is not useful in lightcone outputs, and
is set to 0 for all entries. The column is retained to maintain
consistency with the form of particle snapshot outputs.

10. mass float The mass of the object, in the case that the code was run on a
halo catalog or merger tree.

11. origX,
origY,
origZ

float The cartesian x, y, or z position, respectively, of the object
at the time tj (the objects original position in the input cata-
log snapshot before being permuted by the lightcone solver) in
comoving Mpc/h.

rThe types listed here are also only conventional, and can be changed by the user. Positions and
velocities, for example, can alternatively be given as doubles. Look toward common/HaccTypes.h
for some relevant type declarations.

23

Creating Lightcones in HACC - CPAC - May 2018

5 Too Long; Didn’t Read

Assume an observer located at the spatial origin of a comoving coordinate system. Any
event located on this observer’s past-lightcone will satisfy the condition∫ 1

aevent
c
da
a2H

= ||r|| . (8)

where a is the scale factor, H = ȧ/a (the Hubble parameter), and r is the displacement
vector from the observer to the event. Refer to § 1 for a full derivation. Now, consider
such an event in the context of cosmological simulation output; a particle crosses the
lightcone somewhere between snapshot j and snapshot j+1 (constituting a timestep of
width τ = tj+1 − tj) at an unknown time tj ≤ tevent < tj+1. We define a quantity δt such
that δt = tevent − tj. If we assume that δt ≪ 1s, then we can approximate, to second
order, Eq.(8) using quantities available to us as simulation outputs, as

Θj+1 +
c
aj

[
(τ − δt)−

ȧj
aj

(τ2 − δt2)
2

]
= ∥rj∥+ δt

(rj · vj)
∥rj∥

− δt2

2
(rj · vj)2

∥rj∥3 +
δt2

2
(vj · vj)
∥rj∥

(18)

where Θj+1 is the Simpson’s-rule numerical evaluation of a definite integral similar to
that given above in Eq.(8):

Θj+1 ≡ Simpson

(∫ 1

aj+1

c
da
a2H

)
. (16)

We can then solve for δt via the quadratic formula:

α · δt2 + β · δt+ γ = 0 (19)

=⇒ δt =
−β ±

√
β2 − 4αγ

2α (20)

where we have

α =
cȧj
2a2

j
+

1
2

(
(rj · vj)2

∥rj∥3 −
(vj · vj)
∥rj∥

)
(21)

β = − c
aj

−
(r1 · vj)
∥rj∥

(22)

γ = Θj+1 +
cτ
aj

−
cȧjτ2

2a2
j

− ∥rj∥ (23)

The ultimate utility of the lightcone code is to compute δt for every particle at ev-
ery step of the simulation (find each particle’s lightcone-crossing time). The solution
presented in Eq.(20-23) is derived by extrapolating the position of a given particle (as
sThis approximation is allowed in the case that we use a normalized time unit, such as the scale factor
a(t), or more specifically a power of a called the program time; aα

24

Creating Lightcones in HACC - CPAC - May 2018

seen on the right hand side of Eq.(18)), using it’s velocity, from time tj (known) to time
tj + δt (unknown). If it is found, after solving for δt, that 0 < δt ≤ τ, then the result is
saved. If rather δt > τ or dt ≤ 0, the result is discarded (the first case means we will
almost certainly obtain a better estimate of δt if we instead extrapolate from time tj+1

during the next step of the lightcone construction, and the second case, that the parti-
cle should have already crossed the lightcone at some earlier time). This procedure is
discussed at length in § 2.1.

For a cleaner result, we can interpolate the position of the particle between snapshot
j (tj) and snapshot j+1 (tj+1), rather than extrapolating. This simply requires that we
replace the velocity vj in Eq.(18) with the equivalent linear velocity

vlinear =
rj+1 − rj

τ
, (24)

as more thoroughly described in § 2.3. We also discuss the possibility of relaxing
the assumption that δt ≪ 1, and solving the integral in Eq.(8) entirely numerically.
There are a few shortcomings of the approximated solution described above which
inspire such an idea, including various discreteness artifacts and inaccuracies in the
lightcone output. We have come up with a few workarounds to these problems, which
are presented along with remarks about potential directions for improvement, in § 3.

Lightcone construction is implemented inHACC in nbody/cpu/ParticleActions.cxx,
and driven by nbody/simulation/driver_lc.cxx, or driver_lc_interpolation.cxx,
for the extrapolation (§ 2.1) and interpolation (§ 2.3) approaches, respectively. The
driver’s main() function expects at most six arguments, as given below in § 4.1, Table
1, which is shown below (where only the interpolation driver requires argument 5).
There are also many other run parameters that can be set by the user in a .param file,
several of which are ultimately crucial to the structure of the lightcone output. Not all
of these parameters will be visited in this summary section, but are given in Table 2,
and discussed in high detail in § 4.1. Briefly, those parameters which are the most in-
fluential to the spatial configuration of the problem are LCAllOctants, LCReplicants,
and LCRotate. The purpose of these three options can be understood under the follo-

1. <paramName> path to a HACC param file
2. <outName> output file path
3. <inName> input file path for snapshot i particle data
4. <stepNumber> step number i
5. <nextInName> input file path for snapshot f particle data
6. <nextStepNumber> step number f

Table 1: Input parameters for the lightcone driver’s main() function

wing considerations: we are limited in the extent to which any observer’s lightcone can
reach (how far back in time they can see) by the dimensions of our simulations volume.
For example, if we are interested generating the observable universe to a redshift of
z = 3, then our observer’s past-lightcone will be a spherical object whose radius is
~4.6Mpc/h, assuming a WMAP7 cosmology. To get around the fact that we almost
never deal with simulations larger than 4Mpc/h (and often much smaller) we decide to
replicate and tile the box in space to cover the volume that we require (as thoroughly
detailed in § 4.2, and seen in Figure 3).

25

Creating Lightcones in HACC - CPAC - May 2018

The option LCReplicants (Table 2, option 3), then, sets the number of simulation
boxes required to reach the extent of the lightcone in one dimension, not including the
initial volume. LCRotate (Table 2, option 7) is a boolean value turning on or off the
functionality of applying random rotations to each of these replications, which intends
to avoid regular repetition of large-scale structures. Finally, LCAllOctants (Table 2,
options 2) allows the user to specify the angular domain of the observer, from octant
to full-sky. Again, more details are offered in § 4.1-§ 4.3. Those seeking to run the
code and build lightcones should at least read through Table 2.

The output of the presently discussed code is given in Table 4, immediately pre-
ceding this summary section, with finer details being discussed in the text of § 4.5.
In summary, the output includes the following: the scale factor corresponding to the
calculated lightcone crossing time, tevent = tj + δt; the approximated positions of each
object at the time tevent; velocities (also approximated in the case that interpolation
was used); and ids. Also written out is information on the location and rotation of
the simulation box replication in which each object is found, and other optional and/or
incidental data products.

6 Acknowledgements

The work described over the previous pages was conducted at Argonne National Lab-
oratory, Cosmological Physics and Advanced Computing group. The original code
design and implementation was done by Hal Finkel, upon which our work has been
built. Significant extensions and improvements were completed by Joe Hollowed be-
ginning in December 2017, with indispensable collaboration with Patricia Larsen and
Steve Rangel. Guidance throughout the project was given by Katrin Heitmann and
Salman Habib, as well as valuable input from other members of CPAC; Lindsey Bleem,
JD Emberson, Danila Korytov, and Nesar Ramachandra. Please send any ques-
tions/comments to jphollowed@anl.gov, or post to the group’s general Basecamp
at Docs & Files > HACCLightcones_vX.X.pdf.

26

	Parameterizing the Lightcone Surface
	Crossing the Lightcone
	Particle Extrapolation
	Particle Duplication
	Particle Interpolation

	Nonlinear Effects
	Implementation
	Parameters & Options
	Geometrical Considerations
	Code Layout
	Units
	Output

	Too Long; Didn't Read
	Acknowledgements

