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1 Introduction
In what follows, we will be applying an idealized model of stratospheric aerosol injection to the 1991
eruption of the stratovolcano Mt. Pinatubo in western Luzon, Phillipines near 15◦N. Particularly
relevant to the climate impacts of this eruption (McCormick et al., 1995; Robock, 2000) was the
injection of sulfur species into the atmosphere, namely sulfur dioxide (SO2), and its subsequent
reaction product, sulfate aerosol (a combination of H2O and H2SO4 (sulfuric acid)). Also present
was an enormous amount of ash, ice, and water.

This document describes a method of aerosol injection and radiative forcing that is simple enough
to be applied to idealized dry component sets of a coupled climate model which lacks any pa-
rameterizations for radiative transfer, aerosol physics and chemistry, or other implementations of
volcanic forcings. It has, in particular, been developed assuming a background climate governed
by the Held-Suarez-Williamson (HSW) configuration of atmospheric forcing (Held & Suarez, 1994;
Williamson et al., 1998). Section 2 describes the aerosol tracer source and sink terms, and to-
tal mass burden normalization. Section 3 describes the parameters defining each tracer species,
and Sections 3.1 gives the strategy for sulfate formation from SO2. Sections 3.2.2−3.2.3 give the
methods of stratospheric heating and surface cooling by considerations of shortwave and longwave
extinction. Section 4 compactly presents the most important equations and a table of model pa-
rameters, and finally Section 5 presents an offline single-column version of the model, for which an
analytic solution is presented.
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2 Injection model
Here we consider a simple model for the mass tendency of a tracer j representing an idealized
volcanic stratospheric aerosol injection (SAI) event:

∂mj

∂t
= R(mj) + f (1)

where R(m) is an exponential removal function with e-folding timescale 1/kj ,

R(mj) = −kjmj (2)

and f is a source term which describes the injection of a 3D aerosol mass into the stratosphere

f = AjH(ϕ, λ)V (z)T (t) (3)

with separable horizontal and vertical dependencies H(ϕ, λ) and V (z). The coordinates ϕ, λ, and z
are latitude, longitude, and height, respectively. We take the time dependence to be a simple step
function, representing a constant injection beginning at time t0 and ending at t0 + δt, after which
the source vanishes,

T (t) =

{
1 if t0 ≤ t ≤ t0 + δt

0 if else
(4)

in which case, the mass injection as a function of time is

mj(ϕ, λ, z, t) =
∂mj

∂t
δt (5)

The source function is normalized by the constant A, which scales the total injected mass to a
known parameter Mj , by

Mj = fδt = AjδtH(ϕ, λ)V (z) (6)

In deriving A, let us first discretize the functions H and V on columns i and vertical levels k. If
instead this constant is derived from the continuous expression, we may lose some of the total mass
to numerical diffusion once the mass distribution is deposited onto the model grid. The discretized
forms for the mass tendency and total mass are

∂mj,i,k

∂t
= −kjmj +AjH(ϕi, λi)V (zk), (7)

Mj =
∑
i

∑
k

AjδtH(ϕi, λi)V (zk) (8)

We will now assume a very simple form for the horizontal dependence H such that the injection
occurs uniformly across the horizontal area of a single column i′. If the desired center of the plume
is to be at (ϕ0, λ0), then i′ is chosen to minimize the great circle distance r(ϕi′ , λi′), where

r(ϕ, λ) = a cos−1 [sinϕ sinϕ0 + cosϕ cosϕ0 cos(|λ− λ0|)] (9)

In the discretized expression, the column selection is achieved by setting H to the Kronecker-Delta
function δii′ as

H(ϕi, λi) = δii′ ≡

{
1 if i = i′

0 if i ̸= i′
(10)
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which collapses the column sum in Eq.(8) and gives the normalization in terms of the vertical mass
distribution:

Mj = Ajδtδii′
∑
k

V (zk) (11)

=⇒ Aj =
Mj

δt
∑

k Vk
(12)

Here, we have discarded the delta function from the result to avoid a division by zero in the case
that i ̸= i′, justified by the fact that injection is already constrained to vanish under this condition
by the presence of H in the tendency ∂mj/∂t. We have also defined Vk ≡ V (zk).

Rather than ∂mj/∂t itself, the quantity ultimately required by EAM’s physics interface is the
tendency of the tracer mixing ratio qj ≡ mj/matm. Given the derivations above, this is

∂qj,i,k
∂t

=
1

matm,i,k

[
−kjmj +

Mj

δt
∑

k Vk
Vkδii′

]
(13)

The air mass matm can be replaced by

matm,i,k = ρi,kai∆zi,k (14)

where ρi,k is the air density in this grid cell, ai is the column area, and ∆zi,k is the vertical thickness
of this grid cell. This is further reduced to a function of nothing but the local pressure thickness
∆pi,k via the hydrostatic approximation:

∆pi,k
∆zi,k

+ ρatm,i,kg = 0 (15)

=⇒ ρatm,i,k∆zi,k =
∆pi,k
g

(16)

=⇒ matm,i,k =
∆pi,kai

g
(17)

(the sign is discarded from the first to second line, since this only communicates that p decreases
with z, and what we care abut is the magnitude. Consider it a “flip of integration bounds”).

The final expression for the update of tracer j at position (i, k) for t ∈ [t0, t0 + δt] is then

∂qj,i,k
∂t

=
g

∆pi,kai

[
−kjmj +

Mj

δt
∑

k Vk
Vkδii′

]
(18)

For the vertical dependence V (z), we follow Fisher et al. (2019) and assume a Gaussian distribution
(which in this case we use as a pmf with units of inverse height) defined by a center of mass altitude
µ, and a geometrical standard deviation:

V (z) = exp

(
−1

2

(z − µ)2

(1.5 km)2

)
1

km (19)

For the deviation, we use 1.5 km, which is a compromise between Fisher et al. (2019) and the
vertical width of the parabolic injection profile of Stenchikov et al. (2021). In hydrostatic models
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(such as E3SM), the height z is a diagnostic quantity. Therefore, the vertical profile needs to be
computed at each timestep. Despite this, we choose not to approximate z, and use the per-timestep
diagnostic quantity, since it need only be done for the very brief injection duration. All species j are
co-injected at the same height and with the same deviation, and we do not include a normalization
coefficient in V (z), since Aj is already scaled by

∑
k Vk.

As a final note; for the vertical dependence, we initially attempted to adopt V (z) from the parameter
ensemble Pinatubo study described in Sheng et al. (2015). There, they assume initial injection
profiles of a log-normal form, and generate a large ensemble of injections in a 2D aerosol model
with respect to the shape parameters of this distribution. Scoring of the ensemble members was
done via a weighted approach which utilized agreement with data in four metrics: (1) SO2 mixing
ratio data from the Microwave Limb Sounder (MLS), (2) the global aerosol burden from the High-
resolution Infrared Radiation Sounder (HIRS) and the Stratospheric Aerosol and Gas Experiment
(SAGE-4λ), (3) particle number concentration in various size channels from the Optical Particle
Counter (OPC), and (4) extinction coefficients from the Stratospheric Aerosol and Gas Experiment
(SAGE II). After using the highest-scoring profile result in our simulations, we found that the plume
lofts to altitudes that are much too high.

The conclusion here, as articulated by Stenchikov et al. (2021), is that this analysis misses the
mechanism by which the plume is delivered to the lower stratosphere. This is by design; Sheng
et al. (2015) prescribe the initial mass loading via a zonally-symmetric profile, and the SAGE and
HIRS observations that were used in the ensemble scoring missed the actual eruption. In other
words, those authors use “initial mass distribution” to mean the mass distribution realized only
after the plume is rapidly lofted by co-ignimbrite (ash-driven) convection. Because we include the
eruption itself in our model, it is suggested that we should instead inject just above the tropical
tropopause, near µ = 17-18 km (Stenchikov et al., 2021; Fisher et al., 2019), and then allow this
self-lofting process to carry the plume to a level of neutral buoyancy in the stratosphere, which is
expected to be driven by a vertical velocity of w ≈ 1 km/day with initial heating rates of the dense,
fresh volcanic plume around 20 K/day. See Section 3 for details.

3 Tracer constituents and feedback to the atmospheric state
Here we describe the simultaneous injection SO2, sulfate, and ash tracers. Observations giving
the total injected mass and e-folding time for each species were estimated from satellite data and
published in Guo et al. (2004a) and Guo et al. (2004b), Barnes and Hofmann (1997). Table 1
gives the parameter values chosen for this work, in which case the model describes the 24-hour
injection of a plume centered on 14 km in the vertical, uniformly over a single column. We assume
no background values for any of the injected species prior to the eruption, as in some other studies
(e.g. Bekki and Pyle (1994)). Figure 5 shows an analytic advection-free solution to the problem
(described in Section 5).

In the case that we simply insert choices for Mj and kj for a given tracer into the framework
presented in Section 2, and allow the model to evolve the tracer mixing ratio by the tendencies
as defined, they will be advected with the winds, but will otherwise behave “passively” (i.e. the
atmospheric circulation will be as if the injection did not occur). Sections 3.2.3-3.2.2 describe
several methods by which the tracers can be made “active”, providing feedback to the prognostic
fields of the model in a way designed to represent causal “pathways” observed in nature.
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3.1 Sulfate formation via “toy chemistry”
Once injected into the atmosphere, SO2 follows an oxidation chain with an end product of sulfuric
acid (H2SO4) that condenses with water vapor to form sulfate aerosol particles (Bekki, 1995), which
has a removal timescale much longer than SO2 of one year (Barnes & Hofmann, 1997). This aerosol
is responsible for much of the heating that perturbs the Earth’s energy balance and atmospheric
circulation after a stratospheric volcanic eruption (McCormick et al., 1995; Robock, 2002).

In climate models with high-complexity, this process is mediated by chemistry, radiation, and moist
subgrid processes. Here, we replace all of this by a direct, analytic coupling from SO2 to sulfate, in
a way inspired by the so-called “toy chemistry” of Lauritzen et al. (2015). The SO2 sink R(mSO2)
retains the form of Eq.(2) and e-folding time kSO2, but is now viewed as a reaction rate which
provides a sulfate source.

The sulfate tendency mass is therefore

∂msulf
∂t

= −ksulfmsulf + wkSO2mSO2 (20)

Or, in terms of mixing ratio discretized onto the grid:

∂qsulf,i,k
∂t

= −ksulfqsulf,i,k + wkSO2qSO2,i,k (21)

Here, the reaction weight w encodes the net production of sulfate per unit mass of SO2.

In practice, w can be a tuning parameter of the model, but we can inform a first choice for it
from chemistry. Since the overall effect of the oxidation sequence yields one aerosol “particle” of
sulfate per molecule of SO2 (Bekki, 1995), w will just be the ratio of the sulfate to SO2 molar
mass. It is known from observation that sulfate particles vary in their composition across latitude,
altitude, and season (Yue et al., 1994), dependent on availability of water vapor, and temperature.
In principle, this should complicate a realistic choice of w. We make the simplifying assumption
that all sulfate particles are 75% H2SO4 by mass, as in Bekki (1995), and suggested by observation
(Rosen, 1971; Yue et al., 1994). Defining this percentage as facid = 0.75, and the molar masses of
H2SO4 and SO2 as wH2SO4 and wSO2, the reaction weighting is

w =
wH2SO4/facid

wSO2
≈ 1/0.75× 98.079 g/mol

64.066 g/mol = 2.04 (22)

In the analytic (advection-free) solution to the tracer evolution described in Section 5, this choice
of w results in a peak sulfate mass of about ∼28 Mt occurring ∼2 months after injection. This is
consistent with previous modeling efforts by e.g. Bluth et al. (1997). In that study, however, the
authors note that the observed AOD anomalies post-Pinatubo lagged behind the sulfate loading,
in the case that the sulfate production is modeled as a direct consequence of SO2 depletion.

Toohey et al. (2016) (hereafter EVA v1.0) also model the SO2 → sulfate conversion directly, but
show that the sulfate mass and CCMI AOD peaks can be matched in time by tuning kSO2 = 1/180
days−1 . This differs markedly from the measured timescale of the post-Pinatubo SO2 removal
(Guo et al., 2004b); the claim is that this modified e-folding time is representing the net timescale
of the entire SO2 oxidation chain that arrives at H2SO4, which explains the signal lag observed
in Bluth et al. (1997). Under this condition, the recovered sulfate mass peaks at ∼13 Mt after 6
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months. In Figure 1, we show the analytic solution to the “pulse injection” of sulfate mass from
EVA v1.0, with both their choice of kSO2, and ours, which shows that the difference in peak sulfate
mass is explained only by this parameter choice, and not the reaction normalization.

Figure 1: Total sulfate mass time series from the analytic solutions of our model (red solid
line), and those from EVA v1.0 with 1/kSO2 = 180 days (their default; solid black line), and an
adjustment 1/kSO2 = 30 days (our default; dashed black line). The adjustment of this parameter
fully explains the difference in the peak mass, and all curves begin to converge after 1 year. The
red curve remains largest in mass value since our e-folding timescale of sulfate (360 days) is longer
than EVA v1.0 (330 days). The bands about each curve are ±25% of the mass value, which is the
approximate uncertainty in the (Guo et al., 2004b) measurement of the initial SO2 loading; the
amplitude uncertainty in produced sulfate should be at least this much.

3.2 Diabatic forcing
3.2.1 Shortwave, longwave flux densities

In the Held-Suarez model and its variants, all radiative and convective effects are parameterized
very simply via a single temperature relaxation as

∂

∂t
= −kt(ϕ, p) [T − Teq(ϕ, p)] (23)

where the “equilibrium profile” is

Teq(ϕ, p) = max
[
200K,

[
315K − (60K) sin2 ϕ− (10K) log

(
p

p0

)
cos2 ϕ

](
p

p0

)κ]
(24)

At the reference pressure p0 = 1000 hPa, this reduces to

Teq(ϕ, p0) = 315K − (60K) sin2 ϕ (25)

We emphasize that the HS forcing set knows nothing about the radiative processes of the atmosphere
other than this temperature relaxation, which is constant. That is, TOA energy balance is implied,
though nothing is ever said about shortwave or longwave fluxes.
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However, in computing the diabatic heating and cooling terms of the following sub-sections, it
will be both convenient and natural to have average flux densities for the shortwave and longwave
bands. Our strategy will be to first define a longwave flux density based on the HSW temperature
equilibrium at the surface, and then deduce a shortwave component by setting the total integrated
global power equal to that of the longwave component. This again implies a TOA energy balance,
though this is not strictly needed, since this “radiation” will be used only to control the heating
and cooling rates due to the injected aerosols, while the overall climate is still controlled in the
standard HS way.

The longwave flux density is computed simply from the Stefan-Boltzman law, assuming the planet’s
surface is a graybody,

ILW = σT 4
surf (26)

where σ is the Stefan-Boltzman constant, and we assume unit emissivity. If desired, Tsurf can be the
actual surface temperature on a 2D surface mesh. However, if these datasets will ultimately be used
for validation of climate attribution tools, then it may be preferable for this term to remain purely
analytic. To this end, we choose to approximate the surface temperature by Eq.(25) computed at
the reference pressure p = p0, i.e. Tsurf ≈ Teq(ϕ, p0), in which case the longwave flux density is a
function only of latitude:

ILW = σ
[
315K − (60K) sin2 ϕ

]4 (27)

For incident shortwave radiation, we will use a simple cosϕ form:

ISW = I0 cosϕ (28)

As suggested, we will now scale I0 by enforcing that the total globally-integrated power is in
balance between ILW and ISW (that is, we assume that all longwave radiation reaches the TOA in
the absence of absorption by the tracers). In what follows, re is the radius of the earth. The total
longwave power is

PLW =

∫ 2π

0

∫ π/2

−π/2
ILWr2e cosϕdϕdλ (29)

=

∫ 2π

0

∫ π/2

−π/2
σ
[
315K − (60K) sin2 ϕ

]4
r2e cosϕdϕdλ (30)

= 4πσr2e ×
(
7736342625 K4

)
W (31)

(32)

and the total shortwave power is

PSW =

∫ 2π

0

∫ π/2

−π/2
ISWr2e cosϕdϕdλ (33)

=

∫ 2π

0

∫ π/2

−π/2
I0r

2
e cos

2 ϕdϕdλ (34)

= π2r2eI0 W (35)
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I0 is thus

PLW = PSW (36)

=⇒ I0 =
4πσr2e ×

(
7736342625 K4

)
π2r2e

= 558.54
W
m2

(37)

With this, Eqs.(27, 28) are shown in Figure 2.

This figure shows an energy deficit poleward of 55◦, and a surplus equatorward, with maxima in
the net flux in the midlatitudes. Having said this, we note again that this balance has been done
for consistency and completeness only, and will have no effect on mean atmospheric temperatures.
It is simply that ISW will be used to scale surface cooling by the aerosol AOD, and ILW will be
used to scale local heating of the stratosphere. Further, we note that these fluxes are considerably
higher that the annual average solar insolation of the real Earth system; this is primarily because we
assume that no attenuation of the upwelling longwave radiation occurs in the HSW atmosphere. In
our idealized model, including such an effect would be arbitrary and overly-complicated. Further,
we will show that the heating design has sufficient freedom in the number of tunable parameters
to achieve desired heating rates without being picky about the amplitudes of ISW and ILW.

Figure 2: Longwave and shortwave flux densities as a function of latitude. These are used to scale
the aerosol heating and cooling functions; the net radiation is shown for reference only, and does
not have any bearing on the atmospheric temperature, which instead has radiation parameterized
solely by the Held-Suarez temperature relaxation. See text for discussion.
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3.2.2 Diabatic cooling of the surface

AOD Definition

Increased aerosol optical depths (AOD) decrease the flux density of shortwave solar radiation reach-
ing the troposphere, and contributed to an observed surface cooling of ∼0.5 ◦C during the two years
following the eruption of Mt. Pinatubo (Dutton & Christy, 1992; Self et al., 1993; Fyfe et al., 2013).
Here we will consider a single aerosol species, which can contribute to a reduction of transmitted
radiation (“extinction” ) by both absorption and scattering, with magnitudes expressed via ab-
sorption and scattering coefficients βa, βs. The combined effect of these processes suggests the
extinction coefficient

βe ≡ βa + βs (38)
We can express the extinction coefficient as:

βe = beρ = beqρatm (39)

where be ≡ ba+bs is the mass extinction coefficient of the aerosol species, with dimensions of area per
mass (i.e. an extinction cross section per unit mass), and ρ is the tracer mass density. Henceforth, we
will refer to two distinct mass extinction coefficients: bLW will be used for extinction of longwave
radiation, which is assumed to be entirely absorption, and bSW will be used for extinction of
shortwave radiation, which is assumed to be entirely scattering,

bSW ≡ (bs for the shortwave band) (40)
bLW ≡ (ba for the longwave band) (41)

The remainder of this section will deal only in bSW and bLW; we do not consider any longwave in-
volvement in the surface cooling, nor will we consider the absorption of near-IR shortwave radiation
by the aerosols.

Further, within a single model column, we will make the parallel plane approximation, where we
assume that the extinction coefficient varies only in the vertical,

βe(x, y, z) ≈ βe(z). (42)

The dimensionless aerosol optical depth (AOD) at a height z with model top ztop is then obtained
by integrating the extinction:

τ(z) ≡
∫ ztop

z
βe(z

′)dz′ (43)

=

∫ ztop

z
bSWρ(z′)dz′ (44)

=

∫ ztop

z
bSWq(z′)ρatm(z′)dz′ (45)

When discretized onto a grid with pressure levels k and columns i with area ai, this becomes

τi,k =
∑
k′<k

bSWqi,k′ρatm,i,k′∆zi,k′ (46)

=
∑
k′<k

bSW
qi,k′∆pi,k′

g
(47)
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where the pressure weights were obtained by the hydrostatic approximation as shown in Eq.(15)-
(16), and we have assumed that the index k decreases toward the model top.

Let’s also define a shorthand for the cumulative AOD at the surface as τi ≡ τ(z = 0). After
summing over k for this case, we see that each remaining term is just the total column mass burden
Mi of the aerosol, scaled by the mass extinction coefficient bj and column area ai,

τi =
∑
k

bSW
qi,k∆pi,k

g
=
∑
k

bSW
qi,kmatm,i,k

ai
= bSW

Mi

ai
(48)

Likewise, Eq(47) is a “partial column burden” scaled by bSW. Note that the form Eq.(48), and it’s
derivation, is consistent with Eq.(7.19) of Petty (2006).

We can now make a preliminary constraint of bSW, such that the resulting τi are representative
of post-Pinatubo observations. Zonal-mean AODs observed in the months and years following
the Pinatubo eruption peaked near 0.2-0.5 (Toohey et al., 2016; Mills et al., 2016; Stenchikov
et al., 2021; Dutton & Christy, 1992; Stenchikov et al., 1998), and passive runs of our injection
protocol described in Section 2 yield maximum zonal-mean column mass burdens (as a sum of all
species) which peak near 2 × 107 kg approximately 3 weeks post-injection near the equator. This
suggests

τi = 0.2 = bSW
Mi

ai
(49)

=⇒ bSW =
0.2ai

2× 107 kg (50)

= 400
m2

kg (51)

where we took ai = (200×200)km2, consistent with a ∼2 degree resolution near the equator. Before
continuing, a quick sanity check of this coefficient; if the 2× 107 of aerosol were distributed evenly
over a 20 km thick section of the column (the lower to middle stratosphere), then the corresponding
linear attenuation coefficient βSW would be

βSW = bSWρi =

(
400 m2/kg

) (
2× 107 kg

)
ai (20 km)

= 1× 10−5 1

m (52)

Surface Cooling

We model the surface cooling as an AOD attenuation of an incident radiation with flux density
ISW, as defined in Eq.(28). If this radiation propagates toward the surface along a path s, then by
the Beer-Lambert law, the attenuated flux is

I = ISWexp
(
−
∫ s2

s1

βe(s)ds

)
W
m2

(53)

Again taking the parallel plane approximation, and assuming that radiation from the sun is always
directly overhead, the path of propagation becomes s → z, and thus βe(s) → βe(z). The integral
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Figure 3: Shortwave attenuation ∆Ii of Eq.(56) with respect to aerosol optical depth τ . The atten-
uation, and thus the associated surface cooling, saturates (scatters all available incident radiation)
by τ ≈ 4

term in brackets is then exactly the AOD as derived in the previous section. This gives the
attenuation for a horizontally-uniform column as

I(z) = ISWexp
(
−
∫ ztop

z
βe(z

′)dz′
)

= ISWe−τ(z) W
m2

(54)

The deficit intensity after attenuation by the aerosol over the full height of the atmosphere is
then

∆I ≡ I(z = 0)− ISW = ISW
(
e−τ(z=0) − 1

) W
m2

(55)

With the notation used in Eq.(48), discretized onto a single grid column i, this is

∆Ii = ISW
(
e−τi − 1

) W
m2

(56)

That is, extinction by the aerosol population in this column imposes a deficit of ∆Ii watts per
each square meter of the column in the horizontal. By taking ISW at ϕ = 0, according to Eq.(28),
and τ = 0.2, this form gives ∆I ≈ −100 W/m2, which is roughly consistent with the observed
broadband solar transmission deficits of ∼20% in the months following Pinatubo (Self et al., 1993).
Also note that since ∆Ii is exponential, the shortwave attenuation will saturate by AODs of τ ≈ 4,
as shown in Figure 3 Since τ scales linearly with the column mass Mi, we can expect the cooling
effect to saturate as well for column masses of 4/0.2 = 20 times the initial injection of the tuning run
(recall, a maximum column burden of 2× 107 with τ = 0.2). With the rapid dilution of the tracer
densities by advection, it is difficult to say if this means that the cooling effect will also saturate if
the initial SO2 mass loading is increased by a factor of 20. Double checking that the surface cooling
rate is as expected is advised when running with injection masses of this magnitude.

We now need to translate this to a cooling rate per unit mass ssurf, and associated daily temperature
tendency ∆T . Let us assume that all of the energy lost over the column would have heated the
planetary surface, which in turn would have transferred heat to the atmosphere by a function F
with some efficiency ζ:

ssurf
i,k = ζF (∆Ii) (57)
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The “efficiency” ζ can be interpreted as an actual heat transfer efficiency, or difference in the heat
transfer rates between radiation, the surface, and the atmosphere, an expression of the difference
of specific heat capacities of the surface and atmosphere, etc... We consider it a catch-all for any
of these effects which we do not model, and will treat it as a tuning parameter for the magnitude
of atmospheric surface cooling.

The function F can be obtained by dimensional analysis:

ssurf
i,k = ζ

ai∆Ii

mcool
i

J
kg s (58)

=⇒ ∆Ti,k = ζ
1

cp

ai∆Ii

mcool
i

(1 day)
(86400 s)

K
day (59)

where mcool
i is the mass of air in the lowest n model levels over which the cooling is desired to be

applied. If we apply the cooling only to the lowest model level, i.e. n = 1, then

mcool
i = mi,k=nlev (60)

and otherwise

mcool
i =

nlev−(n−1)∑
k=nlev

mi,k (61)

In this way, the net cooling (total energy loss in J over unit time) is conserved as n increases, and
the cooling per unit mass is “diluted”. The choice of n will effectively encode whatever missing
physical mechanisms should communicate the cooling higher in the vertical column; choosing n = 1
supposes that heat exchange from the surface and atmosphere is primarily by conduction, or rapidly
attenuating radiative transfer. In principle, convection should distribute this heating in the vertical;
we could attempt to account for this by setting n > 1, or instead leave the treatment of convection
to the model configuration. For n > 1, ∆Ti,k and ssurf

i,k are 3D quantities, while ∆Ii and τi are
always 2D quantities. In Table 1, rather than setting n directly we set δzcool, or the height above
the surface in meters where the cooling should be applied, which contains n model levels, depending
on the vertical discretizaiton.

Now, we can use Eq.(56) to make a preliminary tuning of ζ. Stenchikov et al. (2021) informs us that
peak spatial-mean values of the surface cooling in the equatorial belt from 0◦-15◦N post-injection
are around −0.02 K/day. In this region, we have already roughly constrained τ to be near 0.2 in
Eq.(51). Making use of Eq.(59):(

−0.02
K

day

)
= ζ

1

cp

ai
mi,surf

(1 day)
(86400 s)ISW (exp(−0.2)− 1) (62)

=⇒ ζ−1 =
1

cp

ai
mi,surf

(1 day)
(86400 s)

1(
−0.02 K

day

)ISW (exp(−0.2)− 1) (63)

Using ISW from Eq.(28) at latitude ϕ = 0, and mi,surf from Eq.16 with ∆pi,k = 20 hPa (corre-
sponding to ∼200 meters or n = 3 for Eq.(61) in E3SM), this gives

ζ ≈ 4.7× 10−4 (64)

which is independent of horizontal resolution, since ai cancels in Eq.(63) (though it is dependent
on vertical resolution).
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3.2.3 Diabatic heating of the stratosphere

In addition to cooling the surface remotely via scattering of solar radiation, the presence of SO2

and sulfate in the stratosphere also induces a local diabatic heating to the temperature field by
absorption of upward-propagating longwave radiation [citations needed]. After the Mt. Pinatubo
eruption, this process resulted in a temperature anomaly of up to ∼3-4 K peaking near 50-30 hPa
[citations needed], driven by a maximum net temperature change at a rate of ∼1 K/month during
the initial period following the injection, and subsequent plateau for nearly a year (see Mills et al.
(2016), Figure 2).

We model this local warming effect similarly to the cooling of Section 3.2.2, as an attenuation of
upwelling longwave radiation with flux density ILW defined in Eq.(27). This time, we will write the
plane-parallel Beer-Lambert law (for a single uniform column) as an integral of the extinction βe
over the vertical bounds of a particular slab, [z0, z1],

I(z0, z1) = ILWexp
(
−
∫ z1

z0

βe(z
′)dz′

)
(65)

Here we assume that z0 is the lowest extent of the aerosol plume, and there has been no attenuation
between z = 0 and z = z0. In this case, the power per unit area absorbed by this slab is

∆I = ILW − I(z0, z1) (66)

= ILW

[
1− exp

(
−
∫ z1

z0

βe(z
′)dz′

)]
(67)

(68)

If we consider another slab located immediately above z1, on [z1, z2], then the incident flux is no
longer ILW, but rather I(z0, z1):

I(z1, z2) = I(z0, z1)exp
(
−
∫ z2

z1

βe(z
′)dz′

)
(69)

= ILWexp
(
−
∫ z2

z0

βe(z
′)dz′

)
(70)

and the power per unit area absorbed is

∆I = I(z0, z1)− I(z1, z2) (71)

= ILWexp
(
−
∫ z1

z0

βe(z
′)dz′

)[
1− exp

(
−
∫ z2

z1

βe(z
′)dz′

)]
(72)

(73)

This is easy to generalize to an arbitrary slab on [zn, zn+1] as

∆I = I(zn−1, zn)− I(zn, zn+1) (74)

= ILWexp
(
−
∫ zn

z0

βe(z
′)dz′

)[
1− exp

(
−
∫ z(n+1)

zn

βe(z
′)dz′

)]
(75)

(76)
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Discretizing this onto the vertical grid with levels k in column i in the manner of Eqs.(43-47) (being
sure to use bLW rather than bSW) yields

∆Ii,k = ILWexp
(
−
∑
k′>k

bLW
qi,k′∆pi,k′

g

)[
1− exp

(
−bLW

qi,k∆pi,k
g

)]
(77)

where the leftmost exponent sums over all levels k′ which are below level k. The effect here is
that aerosols lower in the vertical column “shadow” those above, decreasing the power of incident
radiation available for absorption; in this way, the peak of the local aerosol heating may lie below
the actual density peak of the plume.

If a simpler implementation is desired, one that does not have this additional dependency on q at
other vertical levels, we could instead just assume that ILW is incident upon all levels, in which
case Eq.(77) reduces to

∆Ii,k = ILW

[
1− exp

(
−bLW

qi,k∆pi,k
g

)]
(78)

In either case, this absorbed power (per unit area) must again be translated to a heating rate
per unit mass sstrat in J/(kg s) and associated temperature tendency ∆T in K/day. If all of the
absorbed radiation is converted to heat, then

sstrat
i,k =

ai∆Ii,k
mi,k

J
kg s (79)

=⇒ ∆Ti,k =
1

cp

ai∆Ii,k
mi,k

(86400 s)
(1 day)

K
day (80)

Further, it turns out that the exponentials in Eqs.(77) and (78) can be well approximated by linear
functions:

Eq.(77) → ∆Ii,k = ILW

[
1−

∑
k′>k

bLW
qi,k′∆pi,k′

g

](
bLW

qi,k∆pi,k
g

)
(81)

Eq.(78) → ∆Ii,k = ILW

(
bLW

qi,k∆pi,k
g

)
(82)

In general, the un-approximated functions have sigmoid-like forms, which experiences an exponen-
tial increase in log(q), before eventually saturating at very high mixing ratios when ILW has been
completely absorbed. In practice, we will only ever encounter mixing ratios which are well within
the exponential regime (linear in q), which holds to better than 1% until at least log(q) = −2 for
any ∆p ∈ [0hPa, 40hPa] (the range spanned by E3SM). For an injection of 17 Tg SO2, we observe
maximum mixing-ratios at the girdpoint level on the order of 10−4; even increasing the initial mass
injection by a factor of 100 would not compromise the approximated form, so we choose to imple-
ment it. In other words, within reasonable eruption parameter choices, it is much less likely that we
achieve a longwave attenuation saturation effect that we saw in the shortwave implementation, as
described for the AOD in Section 3.2.2. The relative approximation error is shown as a function of
q in Figure 4 for Eq.(82). Edit: I’ve done some more tests on the accuracy of this approximation in
the single-column model described in Section 5; while Eq.(81) is the more accurate approximation,
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there is actually more disagreement between Eqs.(77) and (81) than there is between Eqs.(78) and
(82), the latter of which is (misleadingly) shown in Figure 4. I suspect this is due to the error
compounding in the vertical when encountering the sum over k in Eq.(81). I still see errors on
the order of ∼1%, but without truly understanding the behavior of the form under more realistic
conditions, I’ll decide to just implement the unapproximated exponential form Eq.(77).

Figure 4: The relative error of the linear approximation Eq.(82) as a function of mixing ratio,
using the parameter values given in the derivation of Eq.(85).

Finally, we can use Eq.(82) to make a preliminary tuning of bLW. Stenchikov et al. (1998) informs
us that peak monthly-mean zonal-mean values for the stratospheric heating rate 3-6 months post-
injection are around 0.3 K/day near the equator, and passive runs of our injection protocol described
in Section 2 yield monthly-mean zonal-mean mixing ratios at this time and location of about 10−4.
Making use of Eq.(80):(

0.3
K

day

)
=

1

cp

ai
mi,k

ILW

(
bLW

qi,k∆pi,k
g

)
(86400 s)
(1 day) (83)

=⇒ bLW =

(
0.3 K

day

)
(
10−4 kg

kg

) gcpmi,k

aiILW∆pi,k

(1 day)
(86400 s)

m2

kg (84)

Using ai = (200 × 200 km), ∆pi,k = 8 hPa, ILW from Eq.(27) at latitude ϕ = 0, and mi,k from
Eq.16, this gives

bLW ≈ 0.062
m2

kg (85)

Comparing this with Eq.(51), our formulation implies that the aerosols are much more efficient at
attenuating shortwave radiation (by scattering) than longwave radiation (by absorption). This is
consistent with earlier statements that the longwave attenuation is safe to linearly approximate,
while the shortwave attenuation is not.

As a preliminary guess, all tracer species will adopt the same bLW, though we identify bLW,ash in
particular as a tuning parameter of the model. This is because the lofting magnitude of the plume
will be controlled by the aggressive early heating of ash in the fresh plume, since the initial ash
mass loading is decisively dominant over SO2 (see Table 1). This suggests that either the total ash
burden Mash, or bLW for ash can serve as a the tuning parameter which will control the settling
height of the aged aerosols.
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3.2.4 Generalization to mixtures of tracer species

With multiple tracer species j introduced, the total radiative heating is not derived from a simple
sum of the ∆T solutions found over the proceeding sections. Rather, it is the total extinction which
is determined by additive extinction coefficients,

βe =
∑
j

βe,j =
∑
j

be,jmj (86)

In this case, the total AOD of Eq.(48) simply becomes

τi =
∑
k

∑
j

bSW,j
qj,i,k∆pi,k

g
=
∑
j

bSW,j
Mi

ai
=
∑
j

τj,i (87)

Since the implementation of surface cooling due to shortwave extinction depends only on the total
τi, nothing further needs to be done.

For the longwave heating, the expression is a bit more complicated; Eq.(77) becomes

∆Ii,k = ILWexp

−
∑
j

∑
k′>k

bLW,j
qj,i,k′∆pi,k′

g

1− exp

−
∑
j

bLW,j
qj,i,k∆pi,k

g

 (88)

Here, each grid cell has incident upon it radiation of a power density that has already been attenu-
ated by all species j underneath it, and so this does not work out to a sum of j separate evaluations
of ∆I; in this case, it is probably simplest to compute these exponents in advance.

4 Model summary
Tracer tendencies

∂qj,i,k
∂t

=
g

∆pi,kai

[
−kjmj +

Mj

δt
∑

k Vk
Vkδii′

]
(18)

∂qsulf,i,k
∂t

= −ksulfqsulf,i,k + wkSO2qSO2,i,k

(21)

SW radiative and optical properties

ISW = I0 cosϕ (28)
τi =

∑
j bSW,j

Mi
ai

(48)

∆Ii = ISW
(
e−τi − 1

) W
m2

(56)

ssurf
i,k = ζ

ai∆Ii

mcool
i

J
kg s (58)

LW radiative and optical properties

ILW = σ
[
315K − (60K) sin2 ϕ

]4 (27)

∆Ii,k = ILWexp
(
−
∑

j

∑
k′>k bLW,j

qj,i,k′∆pi,k′
g

)
×
[
1− exp

(
−
∑

j bLW,j
qj,i,k∆pi,k

g

)]
(77)

sstrat
i,k =

ai∆Ii,k
mi,k

J
kg s (79)

Box 1: Summary of the important model
equations controlling the tracer injection and
removal, and radiative and optical properties
for the tracers in shortwave and longwave
broadbands. See equation numbers and text
for explanations.
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Table 1: Model parameters. Parameters with a superscript † are tuned parameters. Parameters
with a superscript ‡ are constrained by a data-driven calculation, though not necessarily free for
tuning. Parameters without a superscript are observations and/or estimates directly from the
literature.

Parameter Value Units Description Reference
injection parameters

ϕ0 15.15 deg meridional plume center
λ0 120.35 deg zonal plume center
δt 24 hr injection duration
µ 14 km peak injection altitude Stenchikov et al. (2021)

tracer parameters
kSO2 1/25 1/day SO2 decay rate Guo et al. (2004b)
ksulfate 1/360 1/day sulfate decay rate Barnes and Hofmann (1997)
kash 1 1/day ash decay rate Guo et al. (2004a)
MSO2 17 Tg injected mass of SO2 Guo et al. (2004b)
Mash 50 Tg injected mass of ash Guo et al. (2004a)
w‡ 2.04 - SO2 → sulfate weighting See Section 3.1

heating parameters
ζ† 4.0× 10−3 - surface heating efficiency See Section 3.2.2

δz†cool 100 m max height of surf. cooling See Section 3.2.2
bSW, ash, SO2

‡ 400 m2/kg SW mass extinction coeff. See Section 3.2.2
bSW, sulfate‡ 1900 m2/kg SW mass extinction coeff. See Section 3.2.2
bLW, SO†

2 0.01 m2/kg LW mass extinction coeff. See Section 3.2.3
bLW, sulfate† 29 m2/kg LW mass extinction coeff. See Section 3.2.3
bLW, ash† 1× 10−5 m2/kg LW mass extinction coeff. See Section 3.2.3

5 Single-column analytic solution
In the absence of advection, the evolution of the tracer mass mj(t) in column i is solvable analyt-
ically, and the partial derivatives ∂/∂t used in the previous sections become material derivatives
d/dt. Recall from Section 2 that for the fixed vertical position z′, we have

dmj

dt
= −kjmj(t) + f(t), (89)

Obtaining mj(t) is an initial-value problem of this first-order linear ODE for mj(t) with mj(t0) = 0
(recall that t0 is the initial injection time). In the likely event that we do not remember ODE solu-
tion methods from our time as an undergraduate, we can recruit Mathematica, which gives

mj(t) =
AjV (z′)

kj
e−kjt

′
(
ekjtmin − 1

)
(90)
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where we have defined

t′ = t− t0, (91)
tmin = min[t′, δt] (92)

Of course, any evaluation of these solutions will require a choice of vertical discretization to compute
the normalization A, or in the continuum, we can replace the pmf

∑
k Vkkm−1 with the integrated

pdf
∫∞
0 V (z)dz.

We can now use this solution to verify the “toy chemistry” sulfate formation implementation. In
the absence of advection, and with the choices ksulf = 0 and w = 1, Eq.(20) should give rise to a
sulfate mass which reaches an enduring steady state equaling the total input SO2 mass; let us call
this quantity msulf. With these constraints, the total sulfur-species mass mSO2(t) +msulf(t) should
be conserved once the injection is complete (t′ > δt). The mass mSO2 is given by Eq.(90), which
means

d

dt
msulf(z, t) = kSO2mSO2

= ASO2V (z)e−kSO2t
′
(
ekSO2tmin − 1

)
(93)

Integrating this (while keeping in mind to handle the piecewise inheritance from tmin) gives the
sulfate mass as

msulf =
ASO2V (k)

kSO2
e−kSO2t

′
(
1− ekSO2tmin + ekSO2t

′
kSO2tmin

)
(94)

Taking tmin → tf allows us to verify the post-injection mass conservation:

mSO2(t) +msulf(t) =
ASO2V (z)

kSO2
e−kSO2t

′
(
ekSO2δt − 1

)
+

ASO2V (k)

kSO2
e−kSO2t

′
(
1− ekSO2δt + ekSO2t

′
kSO2δt

)
=

ASO2V (k)

kSO2
e−kSO2t

′
[(

1− ekSO2δt + ekSO2t
′
kSO2δt

)
+
(
ekSO2δt − 1

)]
=

ASO2V (k)

kSO2
e−kSO2tekSO2tkSO2δt

=ASO2V (k)δt = const. (95)

For completeness, the advection-free solution msulf(t) for arbitrary w and ksulf is

msulf(t) =
wASO2V (k)

(ksulf − kSO2)ksulf
e−ksulft

′×[
kSO2

(
1− eksulftmin

)
− ksulfe

(ksulf−kSO2)t
′
(
1− ekSO2tmin

)]
(96)

In Figure 5, the mass evolution of each tracer across time is shown in the injection column, given by
Eq.(90) and Eq.(96), assuming the parameter choices of Table 1 and a grid cell area of (140× 140
m2). The non-decaying sulfate solution Eq.(94) is also shown, providing a visual confirmation that
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Figure 5: The analytic (single-column, advection-free) solution to the parameterized injection and
SO2 → sulfate reaction given the parameter choices presented in Table 1. The time of injection is
t = 30 days. (left) the vertical profile Eq.(19) described in Section 2. (right) contour plots show
the ash, SO2, and sulfate densities according to Eqs.(90, 96), assuming a column area of ai = 2002

km2. Differing grid cell areas (resolution) will change the tracer densities in the column, but not the
total tracer mass. (bottom right) total SO2 and sulfate masses according to Eq.(90) and Eq.(96).
Also shown is a “sulfate validation” curve, which solves Eq.(94), and conserves the total injected
SO2 mass (see text). Thin black lines give numerical (explicit first-order) solutions to the SO2 and
sulfate tendencies, verifying the analytic solutions.
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Figure 6: Verification of the discretized form for the normalization constant ASO2 as defined in
Eq.(12). Two vertical discretizations are shown with nlev levels distributed from 12 km to 24 km.
The nlev= 19 curve gives the positions of the E3SMv2 levels in this region, where the z is the
geopotential height above the surface as output from the model in the HSW configuration. (left)
the sampling of the profile V (z) (right) difference of the total SO2 mass across time between the
nlev=8, 19 profiles, and the analytic reference, computed via Eq.(90). The differences are on the
order of machine precision.

(a) Using the model-tuned parameters given in Table
1. Heating rates are an order of magnitude higher
than intended, and the surface cooling has saturated
due to high AOD values. See text for discussion.

(b) Re-tuning the SW and LW mass extinction co-
efficients to mimic the heating rates of observations
in the single-column. See text for discussion.

Figure 7: The temperature tendencies due to radiative heating, Eqs.(59, 80), for the advection-free
single-column injection model. Calculations were done assuming ϕ = 15◦, and a grid cell area of
(200 × 200) km2. The surface cooling is applied to all levels below 200 m, which for E3SM is the
three lowest model levels. Air masses were estimated using the US Standard Atmosphere (U.S.
Standard Atmosphere, 1976, 1976).
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the function balances the SO2 removal. Overplotted are numerical solutions (explicit first-order)
of the mass tendency ODE, which verify the analytic solutions. Figure 6 shows the same total SO2

and sulfate mass evolution as in Figure 5, with three differing vertical discretizations. This verifies
that the normalization is insensitive to this choice, as discussed in Section 2.

Finally, Figure 7a shows the combined stratospheric heating (Section 3.2.3) and surface cooling
(Section 3.2.2) of the column across a year of time. In this case, the parameters followed the
defaults of Table 1, which were tuned to qualitatively match the heating rates of Stenchikov et al.
(1998) (see their Plate 5), featuring maximum temperature rates of change as ∼0.3 K/day in the
stratosphere, and ∼-0.01 K/day at the surface for several months following the injection.

Because parameter tuning was done with respect to the real model, where mixing ratios are drasti-
cally lowered in the injection column by horizontal transport, the heating rates for the single-column
test shown in Figure 7a are substantially higher than this (both the heating and cooling magnitude
by nearly ten fold), which is expected– as mentioned in Section 3.2.2, when embedded in the GCM,
the maximum column burden of all species is near 2× 107 kg, while the single-column model sees
burdens in excess of 3 × 1010 kg for the same initial SO2 injection. Notice also that shortwave
radiation experiences the attenuation saturation discussed in Section 3.2.2, since the peak AOD
with this very high column mass is ≫ 4, which results in a constant surface cooling for the entire
time domain shown. If we re-tune bSW (in the manner of Eqs.(51)) against the peak mass seen
for the single column, then the surface cooling avoids saturation, and diminishes along with the
stratospheric heating. This effect is shown in Figure 7b; here both the SW and LW mass extinction
coefficients have been re-tuned to yield heating rates that mimic the observational targets. This
single-column model is, if nothing else, a nice environment for testing how sensitive the heating
forms are to changes in the relevant parameters.

Finally, we note that the single column model of course does not experience the self-lofting by
radiative heating of ash, and so eternally remains at the peak injection altitude, while in the
full model, the plume will quickly become buoyant and rise, also acting to decrease local mixing
ratios.
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