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Idea: Finding Space in the Aerosol Model Hierarchy
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Aerosol Model Complexity

Prescribed forcings
e.g. CCMI, EVA

Prognostic aerosols
e.g. NCAR’s WACCM model

EVA: Easy Volcanic Aerosol 
Toohey et al. (2016)
CCMI: Chemistry Climate Model Initiative
Eyering et al. (2013) 

Pinatubo log(AOD)

WACCM: Whole Atmosphere Community 
                Climate Model

Mills et al. (2016)

CCMI EVA
Pinatubo AOD

This work: 
intermediate 

complexity

similar in structure
similar in simplicity/efficiency
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• Injection and transport of aerosol tracers to the DOE E3SM model
• "Radiative heating" via direct, analytic coupling of aerosol mixing-ratios to temperature
• Heating parameters tuned for a Pinatubo-like climate response
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Preview: Idealized Forcing Mimics Pinatubo Observations 
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Teaser: Pinatubo aerosol forcing-induced 
temperature anomalies for 5-member ensemble 

In this talk:
• Injection and transport of aerosol tracers to E3SM
• "Radiative heating" via direct, analytic coupling of 

aerosol mixing-ratios to temperature
• Heating  parameters tuned for a Pinatubo-like climate 

response

Done in a way that provides:
• The spatial detail of a prognostic aerosol model
• The efficiency of applying a prescribed forcing set 

Intended application:
• Embed in an idealized atmosphere with minimal 

forcings
• Generating CLDERA climate attribution validation 

datasets
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ERA5 reanalysis data NCEP reanalysis data, 

Global T anomalies 
up to ~3K peaking at 30-50 hPa

Global T anomalies peaking 
after ~3 months, vanishing by 18 
months

Pinatubo Observations Inspire Model Design
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Model parameters from 
Pinatubo observations:

e-folding for SO2, sulfate
Guo et al. (2004)
Barnes + Hofman et al. (1997)

Initial SO2 mass loading
Guo et al. (2004)

Initial vertical distribution
Sheng et al. (2015)

…..

Hersbach et al. (2020)

Ramachandran et al. (2000)
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Design of the Simple Aerosol Injection
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Strategy: 
Inject initial tracer mass uniformly over single 
model column

SO
2

 tracer mass tendency:

sink:

removal timescale

tracer mass

Sulfate produced directly from SO2:

source:

column selectionvertical profile

amplitude time dependency

Time evolution of tracer masses
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Analytic tracer injection time evolution for 
offline single column

Sulfate density (no transport)

Sheng at al. (2015)
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Diabatic effects of aerosols 
implemented as direct couplings to 
temperature field:

Local stratospheric heating 
• heating rate ∝ log(mixing 

ratio)

Remote surface cooling
• AOD ∝ (column burden)
• cooling rate ∝ log(AOD)

Feedback from Analytically Defined Aerosol Forcings
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SO2 
injection sulfate

local stratospheric heating

AOD surface cooling
arrows: analytic coupling
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heating rate evolution for single-column injection
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Why Idealize? Validation Datasets for Climate Attribution
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nonlinear 
interactions?
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Model has been produced in collaboration with Sandia National Labs:
CLDERA: CLimate impact: Determining Etiology thRough pAthways

https://www.sandia.gov/cldera/   

• Ultimate goal: 
develop new methods to confidently attribute climate impacts to localized sources

• Our model supports this effort by offering validation datasets of controlled source-impact pairs
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Main idea: 
Replace complex physics suite with processes that are:
• just complex enough to allow simulations of quasi-realistic climate
• simple enough to assess diabatic effects

time tendency of 
forecast variable Ψ

Adiabatic fluid flow 
from the dycore

Dissipative mechanisms 
from the dycore

All diabatic time tendencies from physical parameterizations 
replaced with:

1. Mimic PBL mixing by Rayleigh friction
2. Mimic radiation by prescribed temperature relaxation
3. Sponge layer Rayleigh friction 

HSW forcing target

Resulting mean steady-state 
(5-year mean after 3-year spin up)HSW climate forcing minimizes complexity

(Held-Suarez-Williamson)
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Though the HSW steady-state is eternal and symmetric, atmosphere is quasi-realistic:
• Low-frequency variability: latitudinal vacillations of the extratropical jets, timescale of ~25 days
• Horizontal mixing in midlatitudes  

Zonal-mean zonal wind [m/s]
30-day evolution

HSW climate forcing minimizes complexity
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Post-Injection Tracer Transport in the HSW Atmosphere
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Model: E3SMv2
Resolution: 2-degree (ne16)
Vertical grid: 72 levels to ~80 
km

Pinatubo-like parameters:

SO
2

 Loading: 17 Tg 
Injection period: 9-hours Near 
Location: (15 N, 120 W)

• Circulates the globe in ~15 
days

• Density peak lowers to ~1% 
of injected values by month 
3

log(SO2 mixing ratio)
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Forcing Applied to HSW Climate Gives Pinatubo-Like Impacts 
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Stratospheric heating rates 
peaks near 0.3 K/day 

Increased T-gradient at midlatitudes 
give strengthening of polar jets

Global mean T anomaly [K]

m
on

th
 3

m
on

th
 6

sulfate
SO

2

Time [days]

Realistic timescales of SO2, 
sulfate production, decay

Temp anomalies of 3-4 K in 
global mean at ~30-50 hPa
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Closing Thoughts
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Model design was specifically motivated to:
• Provide validation datasets for climate attribution tools
• Forcings lying between the volcanic event and climate impact are minimal and 

controlled; ideal first-step for new attribution methods

This intermediate-complexity implementation may be generally useful for idealized 
assessments of volcanic eruptions on climate:
• Injection, forcing model can be included with any dynamical core configuration from 

dry idealized to complex
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Questions?
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Feedback from Analytically Defined Aerosol Forcings
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• AOD τ defined as a scaled sum of column burdens
• Directly connected to aerosol optical depth (AOD)

Local stratospheric heating Remote surface cooling by AOD
• Heating rate per unit mass s 
• Directly coupled to aerosol mixing ratios q

AOD ”updates” surface temp, outgoing LW


