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June 1991

US Nat’l Archives NAID 6471952

Mt. Pinatubo 
Luzon, Philippines 
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June 1991

US Nat’l Archives NAID 6471952

Dec 1990

imagery: Landsat/Copernicus
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image: NASA Wordview, 4/14/2017
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June 1991

US Nat’l Archives NAID 6471952

Dec 1993

imagery: Landsat/Copernicus
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image: NASA Wordview, 4/14/2017

Mt. Pinatubo Volcano
Luzon, Philippines 
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June 1991

US Nat’l Archives NAID 6471952

Dec 2020

imagery: Landsat/Copernicus
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visible plume on day of eruption 

Japanese Geostationary 
Meteorological Satellite;
Self et al. (1993)

SO₂               sulfate aerosol

half-life ~20 days half-life ~300 days

Volcanic emissions fuel the production of aerosols:

20 billion kg
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visible plume on day of eruption Apr-May 1991
around the globe in ~3 weeks

Japanese Geostationary Meteorological Satellite;
Self et al. (1993)

McCormick at al. (1995)
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July 1991
around the globe in ~3 weeks

visible plume on day of eruption 

McCormick at al. (1995)
Japanese Geostationary Meteorological Satellite;
Self et al. (1993)
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September 1991
around the globe in ~3 weeks

visible plume on day of eruption 

McCormick at al. (1995)
Japanese Geostationary Meteorological Satellite;
Self et al. (1993)
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January 1994
around the globe in ~3 weeks

visible plume on day of eruption 

McCormick at al. (1995)
Japanese Geostationary Meteorological Satellite;
Self et al. (1993)
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Astronaut photograph from Space Shuttle flight STS-41D
NASA Photo ID STS41D-32-14

August 1984
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Astronaut photograph from Space Shuttle flight STS-43
NASA Photo ID STS043-22-23

August 1991
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Pinatubo aerosols
1992
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Astronaut photograph from Space Shuttle flight STS-43
NASA Photo ID STS043-22-23

August 1991
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Pinatubo aerosols
1993

eruption
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2017
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Stratospheric Aerosol Injection
(SAI)

• a proposed method of geoengineering for climate 
change mitigation

• human-controlled release of sulfate aerosols, 
mimicking a continuous volcanic eruption

• active subject of modeling research
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image: Sandia Nat’l Labs

CLDERA

• years 3-6 of my PhD

• collaboration based at Sandia 
National Labs,    
Albuquerque, New Mexico

CLDERA motivation:

Using the 1991 Pinatubo eruption as an exemplar 
event:  develop methods of source–impact attribution

Hypothesis: methods will generalize to non-volcanic 
forcing sources, e.g. SAI

climate 
system

…

forcing 
source

observed impacts

Pinatubo

strat. heating

surf. cooling

?

?
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Outline

Part 1:  volcanic aerosols in a simplified climate model

Part 2:  volcanic modification of midlatitude winds

Part 3:  volcanic effects of the global circulation of mass

7
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Part 1

volcanic aerosols in a simplified climate model

8
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jet stream jet stream

Vertical structure of the atmosphere
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forecasted winds for today 1/10/25
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Vertical structure of the atmosphere
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Pinatubo aerosols
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forecasted winds for today 1/10/25
500 hPa 

jet stream jet stream

SH summer NH winter

Vertical structure of the atmosphere

Pinatubo aerosols
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forecasted winds for today 1/10/25
10 hPa

jet stream jet stream

SH summer NH winter

Vertical structure of the atmosphere

Pinatubo aerosols
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Numerical Climate Modeling 101

Information 
exchange in the 
vertical

Wind, temperature, pressure are computed at 
each point on the grid.
Procedure: Compute, Timestep, Repeat

Equation set with typical approximations:

zonal (E-W) wind change

meridional (N-S) wind change

temperature change

vertical velocity

pressure

image: Kathleen Cantner, 
American Geosciences Institute

Information 
exchange in the 
horizontal

3D grid wrapped 
around the 
sphere
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image: Kathleen Cantner, 
American Geosciences Institute
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fluid solver = “dynamics” parameterizations = “physics”

.
.

.
..

.
.

..

coupled 
ocean modelcoupled 

land model

topography

radiation

clouds chemistry,
aerosols

.

Numerical Climate Modeling 101
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image: Kathleen Cantner, 
American Geosciences Institute
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coupled 
ocean modelcoupled 

land model

topography

radiation

clouds

forecasted change 
in temperature

Adiabatic fluid flow unresolved & parameterized physics

chemistry,
aerosols

.

Numerical Climate Modeling 101
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image: Kathleen Cantner, 
American Geosciences Institute
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forecasted change 
in temperature

Adiabatic fluid flow “idealized physics” = global relaxation of temperature

Idealized Physics

.

.

..

• much simpler
• much faster

10
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forecasted change 
in temperature

“idealized physics” = global relaxation of temperature

Idealized Physics

reference temperature atmospheric temperature
gently nudge 

“Held-Suarez” style

Goal:

Implement an ability to 
simulate volcanic 
eruptions in the 
idealized atmosphere

11
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tracer 
density

Uniform injection over 
single model column

evolution of a tracer q: 

change in 
tracer density

advection production + decay= +

V
er
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di

st
rib

ut
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n
Step 1: tracer definitions for volcanic substances

12
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SO2
 25-day removal 

Sulfate aerosol
 360-day removal 

ash
 1-day removal 

log10(tracer mixing ratios)
-12     -11     -10      -9       -8       -7       -6

Simulated Pinatubo plume circles the globe in ~ 2 weeks

Aerosol quantities are ~2 order of magnitude higher than SO2 by 3 months

13



of 46Intro Part 1    Part 2    Part 3    Summary

SO2
 25-day removal 

Sulfate aerosol
 360-day removal 

ash
 1-day removal 

log10(tracer mixing ratios)
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Attenuation:

tracer 
density
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-
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global radiation profiles 

Step 2: simplified radiative forcing

14
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Attenuation:
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Step 2: simplified radiative forcing

local heating rates 
averaged months 2-3 post-eruption

14
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0                                          1                                          2

0                                          1                                          2

years since eruption

A

B

Result: 
The forcing + tracer 
parameters can be tuned to 
produce realistic Pinatubo 
temperature anomalies 

A

B

2 °C warming near 20 km

-1 °C surface cooling

Peak forcing at ~3 months:

15
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In summary; our implementation is:

· tunable (can mimic historical eruptions)

· portable   (no reliance on external radiation, 
aerosol, chemistry codes)

· publishable!

· usable:

16
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Part 2

volcanic effects on midlatitude winds
wave-mean flow interaction and the transformed Eulerian mean

17
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image: Kathleen Cantner, 
American Geosciences Institute
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fluid solver = “dynamics” parameterizations = “physics”

.
.

.
..

.
.

..

coupled 
ocean modelcoupled 

land model

topography

radiation

clouds chemistry,
aerosols

.

18

Climate Model
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…

Pinatubo simulation ensemble

member 1 member 2 member N

…
member 1 member 2 member N

reference simulation ensemble

) = impact-( significance

paired t-test

19

Simulation Strategy
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Δ
u

  [
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]

Volcanic impact on zonal wind is localized, but significant

——   reference wind every 10 m/s 

10 hPa  (30 km)

Intermittent 
accelerations 
of the NH 
vortex region

20

why?
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temperature contours [K]
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July
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Southern Hemisphere Winter winds, temperature

temperature contours [K]
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Thermal Wind Balance:

“Wind changes in altitude 
accompany temperature 

changes in latitude”

21
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Southern Hemisphere Winter winds, temperature

temperature contours [K]



of 46Intro Part 1    Part 2    Part 3    Summary1/10/25 21

wind, temperature seasonal cycle

naïve understanding: 
stratospheric winds 
simply respond to 

temperature changes

…insufficient!

Thermal Wind Balance:

“Wind changes in altitude 
accompany temperature 

changes in latitude”
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= +

1/10/25

wind speed zonal mean eddy

approximate predictive eq. for zonal wind:

split variables like 

Concept: the Transformed Eulerian Mean (TEM)

22
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= +

1/10/25

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +

wind speed zonal mean eddy

Concept: the Transformed Eulerian Mean (TEM)

22
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TEM-inferred movement of mass in the 
latitude-altitude plane:
the Residual Circulation
green = CCW; purple = CW circulation

Upper stratosphere:
Deep Branch; single pole-to-pole cell, 
from summer to winter hemisphere

Lower stratosphere:
Shallow Branch; equator-to-pole cells 
in each hemisphere

23

streamfunction contours

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +
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circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +

TEM-inferred movement of mass in the 
latitude-altitude plane:
the Residual Circulation
green = CCW; purple = CW circulation

Upper stratosphere:
Deep Branch; single pole-to-pole cell, 
from summer to winter hemisphere

Lower stratosphere:
Shallow Branch; equator-to-pole cells 
in each hemisphere
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propagation direction of large-
scale atmospheric waves=

Rossby Waves

Forcing: vertical propagation, breaking

surf zone

surf zone photo: Paige Alms, by Christa Funk

24

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +
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propagation direction of large-
scale atmospheric waves=

Rossby Waves

Forcing: vertical propagation, breaking

24

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +
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Concept: TEM Balance

25

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +

southern hemisphere winter
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Concept: TEM Balance

26

balanced balancedimbalanced

circulation-driven piece wave-driven piece diffusive piecechange in the mean flow = + +
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Δ
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——   reference wind every 10 m/s 

Q: What is the relative TEM imbalance 
that explains this response?

10 hPa  (30 km)

Results: Volcanically-driven TEM imbalance

27

Intermittent 
accelerations 
of the NH 
vortex region

why?
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——   reference wind every 10 m/s Results: Volcanically-driven TEM imbalance

28

Δ
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 [
m
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Identified TEM 
imbalance:
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——   reference wind every 10 m/s Results: Volcanically-driven TEM imbalance

28

Δ(circulation-driven) Δ(wave-driven) Δ(diffusive piece)Δ (change in the mean flow) = + +
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In summer ‘91:
Enhanced 
circulation

Identified TEM 
imbalance:

w*         v*
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In summer ‘91:
Enhanced 
circulation

In winter ‘92:
Diminished wave 
drag

——   reference wind every 10 m/s Results: Volcanically-driven TEM imbalance

28

Δ(circulation-driven) Δ(wave-driven) Δ(diffusive piece)Δ (change in the mean flow) = + +
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Explanation of summer response:

accelerated residual circulation in its shallow branch
 = enhanced Coriolis force near 30°N

circulation forcing  [m/s/month]

reference stateimpact

Δu   [m/s]

Results: Volcanically-driven TEM imbalance

29

July – August ’91                      residual circulation direction
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Explanation of winter response:

enhanced equatorward wave deflection
= diminished wave drag aloft

wave drag  [m/s/month]

reference stateimpact

Δu   [m/s]

Results: Volcanically-driven TEM imbalance

30

February – March ’92                    wave propagation
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Q: What is the relative TEM imbalance that controls the post-Pinatubo 
wind response?

A: It depends on the background condition

(1) In the quiescent summer stratosphere, advection + Coriolis anomaly in control

(2) In the winter vortex region, Rossby wave deflection anomaly in control

Results: Volcanically-driven TEM imbalance

31



of 46Intro Part 1    Part 2    Part 3    Summary1/10/25

Part 3

volcanic impact on global circulation of mass 
diagnostic tracers and the age of stratospheric air

32



of 46Intro Part 1    Part 2    Part 3    Summary1/10/25

In Part 2, we concluded that the NH summer residual circulation accelerates 
post-eruption, driving a westerly wind impact 

Q: What are the implications on tracer transport? 

33



of 46Intro Part 1    Part 2    Part 3    Summary1/10/25

al
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surface

tropopause

60 km

Age of Air  (AoA)
a passive tracer for measuring the timescale of global circulation

• constant source at the surface
• no stratospheric sinks 

34
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a passive tracer for measuring the timescale of global circulation

• constant source at the surface
• no stratospheric sinks 

34
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Mean AoA distribution in E3SM
• higher, polar = older
• lower, tropical = younger
• oldest air: 

>5 years since tropospheric contact

meridional transport is slow

35

Why we care:

photochemical rates of greenhouse 
gases, ozone vary with height and 
latitude.

transport is thus determines chemical 
evolution in the upper atmosphere
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10 hPa

-5 -4 -3 -2 -1 0 1 2 3 4

Δ(age of air)   [months]

Post-eruption, age decreases 
throughout the stratosphere

Impacts persist at high latitudes for 
> 4 years

Tracers have a much longer memory 
of volcanic forcing than does the wind 

Younger air = consistent with 
accelerated residual circulationolder air = ???

36
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measurement of the residual circulation transit time (RCTT)
(numerical integration of the time-varying residual-circulation (v*, w*))

37
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2

measurement of the residual circulation transit time (RCTT)
(numerical integration of the time-varying residual-circulation (v*, w*))
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2

measurement of the residual circulation transit time (RCTT)
(numerical integration of the time-varying residual-circulation (v*, w*))
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24

4

measurement of the residual circulation transit time (RCTT)
(numerical integration of the time-varying residual-circulation (v*, w*))

37
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5-year time-mean, ensemble-mean RCTT

38
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age of air  [years] transit time [years]

39

Comparing age to transit time
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age of air  [years] transit time [years] mixing  [years]

net aging
aging by pure 

transport
aging by two-

way mixing= +

39

Comparing age to transit time
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Volcanic impact on transport and mixing
southern hemisphere aging feature has transport and mixing contributions 

40

-5   -4   -3   -2   -1    0     1    2    3     4

Δ (age of air)
-5   -4   -3   -2   -1    0     1    2    3     4

Δ (transit time)
-5   -4   -3   -2   -1    0     1    2    3     4

Δ (aging by mixing)

[months] [months]

ongoing work; response is associated with the latitude and the season of the eruption

Low-latitude summertime eruptions seem to reliably produce the positive aging signal 
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Q: What are the volcanic implications of on tracer transport?

A: Transport speed is affected, 
but the sign depends on where we look

(1) In the hemisphere of the eruption (northern), younger air enters the 
stratosphere and spreads pole-to-pole

(2) In the hemisphere opposite the eruption (southern), older air accumulates in 
the lower stratosphere

41
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climate 
system

Pinatubo

stratospheric heating

surface cooling

winter vortex accelerations

altered stratospheric composition 

???

Part 1:
simulation of Pinatubo 
temperature anomalies in 
an idealized model  

Part 2:
Seasonal mechanisms 
identified: 
• wintertime wave deflection
• summertime enhanced 

circulation

Part 3:
changes to global transport 
inferred from stratospheric 
age; hemispheric response 
is asymmetric

Summary

42
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Final words:
what this work implies for intentional climate modification (e.g. SAI)

• It is almost certainly not possible to ever achieve a single effect in 
the climate

• Side effects, governed by complex dynamical interactions, can be 
indirect, subtle, and unpredictable

• .Local effects will always be even harder to anticipate

43
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many thanks
EGU in Vienna

real science

Summer in New Mexico

The CLDERA Team
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Thank you!

46
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Predictive eq. for zonal wind:
Predictive eq. for zonal-mean zonal wind:
(inefficient for diagnosing wave-mean flow interaction!)

,

wind speed zonal mean eddy

Concept: the Transformed Eulerian Mean (TEM)
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