

Mt. Pinatubo-Inspired Idealized Climate Data Sets with Embedded Pathways

Christiane Jablonowski (<u>cjablono@umich.edu</u>) Joe Hollowed (<u>hollowed@umich.edu</u>)

University of Michigan, Ann Arbor

CLDERA All-Hands Meeting, 05/16/2022

Motivation

- Goal: Provide idealized climate data sets with prescribed pathways for a tiered verification of the CLDERA tools
- CLDERA exemplar: Selected Characteristics of the Mt. Pinatubo eruption
- Reminder of the first CLDERA science question: Temperature
- Principles behind idealized climate simulations
 - Climate model hierarchy: from simple to complex
 - Idealized Held-Suarez-Williamson (HSW) forcing with an active stratosphere
 - Baseline HSW climate
- Use of passive tracers to emulate the Mt. Pinatubo stratospheric aerosol injection (SAI)
 - Transported tracers: SO₂ and ash with sources and sinks
 - Embed prescribed pathways in the simulations, guided by the tracers
 - 2-node pathway with a single radiative response in the stratosphere
 - 3-node mixed pathway (via toy chemistry) with a single radiative response in the stratosphere
 - 3-node mixed pathway with a dual radiative response: stratosphere & surface
- Discussion points

Mt. Pinatubo (June/15/1991) Fact Sheet

- Source/SAI: Main volcanic eruption released about 17-20 Tg of sulfur dioxide (SO₂) and 50 Tg of ash into the stratosphere (20-27 km) in the tropics (Guo et al. (2004a,b), Mills et al. (2016))
- Sink: E-folding (removal) time is around 25 days for SO₂ and 1 day for ash
- Tracer advection & atmospheric circulation:
 - SO₂ circled the Earth within 3 weeks
 - Injected particles and their radiative forcing are initially confined within the tropics and subtropics before the aerosols reach the midlatitudes and poles after 3-4 months
- Chemistry: SO₂ chemically interacts with other species (like OH, H₂O) to form sulfuric acid gas H₂SO₄ and liquid H₂SO₄-H₂O sulfate aerosols
- Forcing: Aerosols control radiative forcing, aerosol optical depth (AOD) is an indicator
 - Stratospheric heating due to absorption of long wave (LW) and near-infrared radiation (SO₂ and H₂SO₄)
 - Surface/Troposphere cooling: sulfate scatters incoming short-wave (SW) solar radiation, overall cools the surface and troposphere, cooling dominates the overall response of the climate system for ≈ 2 years
- The important nodes in the pathway are:

gas/SAI injection \rightarrow secondary aerosols (sulfate) \rightarrow radiation effects \rightarrow temperature

• The elements in red are simplified in the idealized climate experiments

CLDERA Mt. Pinatubo Exemplar: Nodes in the Pathways

Plus:

Secondary pathways related to changes in the wind and circulation (caused by the heating/cooling). Are these detectable?

Modified from McCormick et al. (Nature, 1995)

Relationship to the CLDERA Science Question: What are the spatio-temporal signatures of the temperature change due to the Mt. Pinatubo eruption?

Primary use of the idealized data Can known pathways be recovered and new pathways discovered in both simulated and observed data sets? How well do the simulated and observed pathways align? (magnitude, lag, extent, ...)

Secondary use when using different ICs

 How does the QBO, ENSO, and / or NAO ('a varying background state') impact the relationship between the eruption and temperature perturbation?

Another potential secondary use Can CLDERA identify the location and magnitude of the Mt. Pinatubo eruption from the temperature perturbation? How does the attribution change as a function of eruption characteristics and lag from eruption time? (traditional inverse problem)

Not covered in idealized data

• Can pathways be used to resolve debate surrounding NH winter warming?

Building Bridges across the GCM Model Hierarchy

Idealized Held-Suarez-Williamson (HSW) Forcing

Main idea: replace the complex physics package with processes that are:

- just complex enough to allow simulations of an idealized 'climate' (resembling nature)
- simple enough to allow tractability of flow features embedded in this environment
 - "cleaner", i.e. fewer couplings/feedbacks between processes
 - Lower *conceptual* and *computational* complexity
- The HSW forcing for **dry** dynamical cores mimics the **planetary boundary layer (PBL) mixing** via Rayleigh friction and replaces the **radiation** with a Newtonian temperature relaxation.

Idealized HSW forcing plus Simple Pathway Mechanisms

Physical Parameterizations	Replaced by Idealized HSW Physics	
Microphysics	none	
Macrophysics	none	
Deep convection	none	
Shallow convection	none	$Phys(\Psi)$ functions
Gravity wave drag	none	
Radiation	Newtonian temperature relaxation	$ \frac{\partial T}{\partial t} = -\frac{1}{l_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_{e_$
Surface fluxes	none	$\partial t = \kappa_T(\phi, p)^{-1}$
Planetary boundary layer turbulence	Rayleigh friction	$ \frac{v_h}{\partial t} = -\frac{1}{h(n)} \vec{v}_h$
		$Ol = \kappa_v(p)$
Modules	Replaced by (for embedded pathways)	• k_v and k_τ are spatially-dependent
Chemistry module	none or 'toy chemistry'	 Tis a thermal equilibrium
Aerosol module	none or 'sulfate' (via toy chemistry) & 'AOD' (via aerosol column burden) analogues	temperature (shown on next slide)
	active solution survey, analogues	See Held and Suarez (BAMS, 1994),

Williamson et al. (MWR, 1998)

Description of the HSW forcing & Initial Conditions (IC)

- All radiation processes approximated by the relaxation to the HSW equilibrium temperature profile T_{eq}
- Two Rayleigh friction (RF) layers
 - at lower levels below 700 hPa mimicking the PBL turbulence/mixing
 - RF mixing above 1 hPa in the sponge layer to absorb upward propagating waves

HSW Climate Response is Quasi-Realistic

- Time-mean zonal-mean zonal wind U (m/s) and temperature T (K) climatology mimics Earth
- Circulation is quasi-realistic with midlatitudinal and polar jets caused by latitudinal T gradients

HSW: Snapshots of the Temperature are Quasi-Realistic

• Animations of the T evolution in the lower troposphere (850 hPa) & stratosphere (50 hPa)

Idealized Etiological Pathways Triggered by Tracers

Simple *Stratospheric Aerosol Injection (SAI)* modelled as a 3D Gaussian ellipsoid, injection has a prescribed time limit and profile

• The tracer tendency $\frac{\partial \rho}{\partial t} = R(\rho) + f$ for e.g. the SO₂ density ρ is a function of the injection source f and a linear sink R representing chemical removal:

Idealized Etiological Pathways Triggered by Tracers

Simple *Stratospheric Aerosol Injection (SAI)* modelled as a 3D Gaussian ellipsoid, injection has a prescribed time limit and profile

• The tracer tendency $\frac{\partial \rho}{\partial t} = R(\rho) + f$ for e.g. the SO₂ density ρ is a function of the injection source f and a linear sink R representing chemical removal:

SO₂ Evolution in E3SMv2 HSW (over 30 days)

E3SMv2 HSW ne16L72, SO2, day 0

17 Mt SO₂
injected over
48-hour period at
(15 N, 120 W)

Circulates the globe in ~20 days; quasi-realistic!

SO₂ Evolution in E3SMv2 HSW (over 30 days)

E3SMv2 HSW ne16L72, SO2, day 0

SO₂ and Ash Evolution in E3SMv2 HSW (over 30 days)

E3SMv2 ne16L72 HSW 17 Mt SO2, 50 Mt Ash **SO2** ash injected over day 0 48-hour period at (15 N, 120 W) SO₂ Circulates the globe in ~20 days Ash dissipates below 1e-12 by day ~20 p=30 hPa p=30 hPa Removal time Removal e-folding time scale 25 days scale 1 day

SO₂ and Ash Evolution in E3SMv2 HSW (over 30 days)

E3SMv2 ne16L72 HSW 17 Mt SO2, 50 Mt **SO2** Ash ash injected over , day 0 48-hour period at (15 N, 120 W) SO₂ Circulates the globe in ~20 days Ash dissipates below 1e-12 by day ~20 p=10 hPa p=10 hPa Removal time Removal e-folding time scale 25 days scale 1 day

- All embedded pathways are guided by tracer distributions (injection event)
- 2-node pathway with a single radiative response: heating in the stratosphere

Temperature pathways are also described here:

https://sems-atlassian-son.sandia.gov/confluence/display/cldera/Temperature+signature+focus

- 2-node pathway with a single radiative response in the stratosphere
- Magnitude of our heating anomaly is informed by 'observations' (ERA5 renanalysis)
- Large tropical volcanic eruptions: Agung (March 1963), El Chichon (April 1983) and Mt. Pinatubo (June 1991) triggered heating anomalies around **3-4 K at 30 hPa**

ERA5 estimates of the heating anomaly (Bell et al., QJ, 2021): monthly and globally averaged upper-air anomalies with respect to the 1981–2010 monthly climatology for (a) temperature. Note the different color scales used above and below 100 hPa. See also Sukhodolov et al. (GMD, 2018), Fig. 6

Pathway 1: Initial demonstration project

 Stratospheric heating is directly connected to SO₂ mixing ratio (maybe log₁₀(SO₂)) with peak heating tendency of a few K/day

Model this via a heating rate per unit mass, influencing the temperature tendency

- 3-node mixed pathway (via toy chemistry) with a single radiative response: heating in the stratosphere
- Replace the (linear) removal process for SO, with toy chemistry, potentially informed by the presence of a second passive tracer like water vapor
- SO₂ chemistry sink becomes liquid H₂SO₄-H₂O sulfate aerosol source

Main pathway

- Tropical liquid H₂SO₄-H₂O (sulfate aerosol) observations by the SAGE satellite instrument after 1991 eruption
- Observations of liquid H₂SO₄-H₂O inform the toy chemistry process (production rate of fake 'sulfate aerosols', see schematic diagram)
- Liquid 'sulfate aerosol' is produced and serves as a new sink for SO₂
- Lifetime of liquid H₂SO₄-H₂O aerosol in the stratosphere is about 1 year (slower removal time scale than SO₂)

for SO_2 and ash column burden observations after the eruption, see also Sekiya et al. (JGR, 2016)

Figure 7. Vertical distribution of liquid H_2SO_4 concentration averaged over the tropics (20° S–20° N). Source: Sukhodolov et al. (GMD, 2018)

- 3-node mixed pathway with a dual radiative response: stratospheric heating & surface cooling
- Use the (vertically integrated) column-burden of SO₂ and ash to mimic AOD
- Might need longer removal time scales for SO, and ash for 90-day runs

Main pathway

- 3-node mixed pathway with a dual radiative response: stratospheric heating & surface cooling
- Use the (vertically integrated) column-burden of SO₂ and ash to mimic AOD (informed by satellite observations)
- Aerosol amount (AOD/column burden) informs cooling magnitude

40-day-mean AOD after the eruption, aerosols confined within the tropics

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1991

(550 nm)

Stratospheric AOD

Mean during month 3 after eruption, aerosols start to reach poles

Aerosol column burden mimics AOD, drives surface cooling

- aerosol column burden (increased AOD) after eruption triggers cooling in the lower troposphere (TLT): -0.4 - -0.8 K
- Informs our cooling magnitudes

Discussion Points: Idealized climate data

- 1. Scientific design of the pathways and idealized atmospheric circulation
 - Are the three suggested pathways just right, too simple, or too complicated?
 - Provide feedback, other pathway designs are possible
 - More complexity is possible, e.g. with idealized topography or idealized moisture processes. Is there a need?
- 2. Design of potential ensembles
 - Are the tools robust: variations of the initial conditions or injection profile using identical pathways
 - Can tools detect the strength of the pathway correlations? E.g. doubling the heating strength?
 - Is random noise in the pathways needed or desired?
- 3. Data questions
 - File formats: All files will be in **netcdf** format. Does this work for the tools? Desired data location (e.g. Sandia HPC)? One file per variable or all variables in one file? How many time snapshots per file? Etc.
 - Grid: Native cubed-sphere L72 grid? Is 4D (lon, lat, lev, time) remap desired as a postprocessing step?
 - Resolution: suggested starting point is ne16 (200 km) with 72 levels (L72), ne30 (100 km) is possible
 - Output variables: which ones are needed? 2D needed, e.g. data on pressure levels, vertically-integrated?
 - Output frequency: e.g. 1hr, 3hr, 6hr, daily, monthly, instantaneous or time-means?
 - Simulation length: suggested starting point is 90 days (aerosols start to reach poles)
 - Number and design of ensembles: initial conditions, variation of coefficients, variation of injection profile, ...

Some suggested answers:

- Simulation data will be provided on an HPC system
- We will likely run the ne16L72 (200 km) medium low resolution
 - but if there is a need we can run at the resolution of prognostic runs: ne30L72 (100 km)
- We will output data like E3SM runs on the native cubed-sphere grid on model levels (if 3D)
 - will have to use mappings from native grids, see <u>spatial</u> <u>remapping</u> and <u>vertical remapping</u>

Specific Questions: What are the data requirements for the CLDERA tools?

- 1. How will you use this data set? (i.e. what are the metrics you will use when using this—what will you be verifying?)
 - i) What temporal output frequencies are important for you?
- 2. How strongly should the implementations be inspired by Pinatubo i.e. should we try for a "sulfate" or should we put in predator-prey formalisms?
 i) What criteria can help us make this decision?
- 3. How important are ensemble runs?
- 4. How much should this be used to understand sensitivities (to initial conditions (QBO phase for instance), to eruption characteristics (location, magnitude, injection height), ...)?
- 5. How should we prioritize simulations? When is a simulation plan needed?

References

Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. (2021), The ERA5 global reanalysis: Preliminary extension to 1950. *Q J R Meteorol Soc*, 147, 4186-4227, doi:<u>10.1002/qi.4174</u>

Dhomse, S. S. et al. (2014), Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model, Atmos. Chem. Phys., 14, 11221–11246, doi:10.5194/acp-14-11221-2014

Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J. (2004a), Re-evaluation of SO₂ release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors, *Geochem. Geophys. Geosyst.*, 5, Q04001, doi:10.1029/2003GC000654

Guo, S., Rose, W. I., Bluth, G. J. S., and Watson, I. M. (2004b), Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice, *Geochem. Geophys. Geosyst.*, 5, Q05003, doi: 10.1029/2003GC000655.

Held, I. M., and Suarez, M. J. (1994), A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models, *Bulletin of the American Meteorological Society*, 75(10), 1825-1830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2

Maher, P., Gerber, E. P., Medeiros, B., Merlis, T. M., Sherwood, S., Sheshadri, A., et al. (2019), Model hierarchies for understanding atmospheric circulation, *Reviews of Geophysics*, 57, 250-280, doi:10.1029/2018RG000607

Kremser, S., et al. (2016), Stratospheric aerosol—Observations, processes, and impact on climate, *Reviews of Geophysics*, 54, 278–335, doi:10.1002/2015RG000511

Marshall, L. R., Maters, E. C., Schmidt, A., Timmreck, C., Robock, A., and Toohey, M. (2022), Volcanic effects on climate: recent advances and future avenues. *Bull. Volcanol.*, 84, 54, doi:10.1007/s00445-022-01559-3

McCormick, M., Thomason, L., and Trepte, C. (1995), Atmospheric effects of the Mt Pinatubo eruption. Nature, 373, 399-404, doi: 10.1038/373399a0

Mills, M. J., et al. (2016), Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM), J. Geophys. Res. Atmos., 121, 2332-2348, doi:10.1002/2015JD024290

Sekiya, T., Sudo, K., and Nagai, T. (2016), Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes, *J. Geophys. Res. Atmos.*, 121, 2911–2938, doi:10.1002/2015JD024313

Sukhodolov, T., Sheng, J.-X., Feinberg, A., Luo, B.-P., Peter, T., Revell, L., Stenke, A., Weisenstein, D. K., and Rozanov, E. (2018), Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0, *Geosci. Model Dev.*, 11, 2633-2647, doi:<u>10.5194/gmd-11-2633-2018</u>

Williamson, D. L., Olson, J. G., and Boville, B. A. (1998). A Comparison of Semi-Lagrangian and Eulerian Tropical Climate Simulations, *Monthly Weather Review*, 126(4), 1001-1012, doi:10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2

Food for thought: Other (More Complex) Impacts of Volcanic Eruptions

- Idealized experiments are a stepping stone and support the tiered evaluation of the
- CLDERA tools.
- Build a bridge towards more complex cause-and-effect assessments of volcanic (or future non-volcanic) events:
 - Changes to atmospheric dynamics including NH winter warming
 - Ozone depletion
 - Changes in precipitation
 - Weaker monsoons
 - Reduced ocean heat content
 - Shifts in the position of the Intertropical Convergence Zone (ITCZ)
 - Increased sea ice
 - Shifts in phases of modes of climate variability including the North Atlantic and the El Nino Southern Oscillation (ENSO)
 - Changes to Atlantic Meridional Overturning Circulation and Atlantic Multidecadal Variability
 - Disruption to the Quasi-Biennial Oscillation
 - Changes to the carbon cycle

Marshall et al. (2022)